TY - JOUR
T1 - Finite group extensions of shifts of finite type
T2 - K-theory, Parry and Livšic
AU - Boyle, Mike
AU - Schmieding, Scott
N1 - Publisher Copyright:
© Cambridge University Press, 2016.
PY - 2017/6/1
Y1 - 2017/6/1
N2 - This paper extends and applies algebraic invariants and constructions for mixing finite group extensions of shifts of finite type. For a finite abelian group G, Parry showed how to define a G-extension SA from a square matrix over ℤ+G, and classified the extensions up to topological conjugacy by the strong shift equivalence class of A over ZCG. Parry asked, in this case, if the dynamical zeta function det(I - t A)-1 (which captures the 'periodic data' of the extension) would classify the extensions by G of a fixed mixing shift of finite type up to a finite number of topological conjugacy classes. When the algebraic K-theory group NK1(ℤG) is non-trivial (e.g. for G = ℤ/n with n not squarefree) and the mixing shift of finite type is not just a fixed point, we show that the dynamical zeta function for any such extension is consistent with an infinite number of topological conjugacy classes. Independent of NK1(ℤG), for every non-trivial abelian G we show that there exists a shift of finite type with an infinite family of mixing non-conjugate G extensions with the same dynamical zeta function. We define computable complete invariants for the periodic data of the extension for G (not necessarily abelian), and extend all the above results to the non-abelian case. There is other work on basic invariants. The constructions require the 'positive K-theory' setting for positive equivalence of matrices over ℤG[t].
AB - This paper extends and applies algebraic invariants and constructions for mixing finite group extensions of shifts of finite type. For a finite abelian group G, Parry showed how to define a G-extension SA from a square matrix over ℤ+G, and classified the extensions up to topological conjugacy by the strong shift equivalence class of A over ZCG. Parry asked, in this case, if the dynamical zeta function det(I - t A)-1 (which captures the 'periodic data' of the extension) would classify the extensions by G of a fixed mixing shift of finite type up to a finite number of topological conjugacy classes. When the algebraic K-theory group NK1(ℤG) is non-trivial (e.g. for G = ℤ/n with n not squarefree) and the mixing shift of finite type is not just a fixed point, we show that the dynamical zeta function for any such extension is consistent with an infinite number of topological conjugacy classes. Independent of NK1(ℤG), for every non-trivial abelian G we show that there exists a shift of finite type with an infinite family of mixing non-conjugate G extensions with the same dynamical zeta function. We define computable complete invariants for the periodic data of the extension for G (not necessarily abelian), and extend all the above results to the non-abelian case. There is other work on basic invariants. The constructions require the 'positive K-theory' setting for positive equivalence of matrices over ℤG[t].
UR - http://www.scopus.com/inward/record.url?scp=84957795749&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84957795749&partnerID=8YFLogxK
U2 - 10.1017/etds.2015.87
DO - 10.1017/etds.2015.87
M3 - Article
AN - SCOPUS:84957795749
SN - 0143-3857
VL - 37
SP - 1026
EP - 1059
JO - Ergodic Theory and Dynamical Systems
JF - Ergodic Theory and Dynamical Systems
IS - 4
ER -