TY - JOUR
T1 - Fitness consequences of altered feeding behavior in immune-challenged mosquitoes
AU - Ohm, Johanna R.
AU - Teeple, Janet
AU - Nelson, William A.
AU - Thomas, Matthew B.
AU - Read, Andrew F.
AU - Cator, Lauren J.
N1 - Publisher Copyright:
© 2016 Ohm et al.
PY - 2016/2/29
Y1 - 2016/2/29
N2 - Background: Malaria-infected mosquitoes have been reported to be more likely to take a blood meal when parasites are infectious than when non-infectious. This change in feeding behavior increases the likelihood of malaria transmission, and has been considered an example of parasite manipulation of host behavior. However, immune challenge with heat-killed Escherichia coli induces the same behavior, suggesting that altered feeding behavior may be driven by adaptive responses of hosts to cope with an immune response, rather than by parasite-specific factors. Here we tested the alternative hypothesis that down-regulated feeding behavior prior to infectiousness is a mosquito adaptation that increases fitness during infection. Methods: We measured the impact of immune challenge and blood feeding on the fitness of individual mosquitoes. After an initial blood meal, Anopheles stephensi Liston mosquitoes were experimentally challenged with heat-killed E. coli at a dose known to mimic the same temporal changes in mosquito feeding behavior as active malaria infection. We then tracked daily egg production and survivorship of females maintained on blood-feeding regimes that either mimicked down-regulated feeding behaviors observed during early malaria infection, or were fed on a four-day feeding cycle typically associated with uninfected mosquitoes. Results: Restricting access to blood meals enhanced mosquito survival but lowered lifetime reproduction. Immune-challenge did not impact either fitness component. Combining fecundity and survival to estimate the population-scale intrinsic rate of increase (r), we found that, contrary to the mosquito adaptation hypothesis, mosquito fitness decreased if blood feeding was delayed following an immune challenge. Conclusions: Our data provide no support for the idea that malaria-induced suppression of blood feeding is an adaptation by mosquitoes to reduce the impact of immune challenge. Alternatively, the behavioral alterations may be neither host nor parasite adaptations, but rather a consequence of constraints imposed on feeding by activation of the mosquito immune response, i.e. non-adaptive illness-induced anorexia. Future work incorporating field conditions and different immune challenges could further clarify the effect of altered feeding on mosquito and parasite fitness.
AB - Background: Malaria-infected mosquitoes have been reported to be more likely to take a blood meal when parasites are infectious than when non-infectious. This change in feeding behavior increases the likelihood of malaria transmission, and has been considered an example of parasite manipulation of host behavior. However, immune challenge with heat-killed Escherichia coli induces the same behavior, suggesting that altered feeding behavior may be driven by adaptive responses of hosts to cope with an immune response, rather than by parasite-specific factors. Here we tested the alternative hypothesis that down-regulated feeding behavior prior to infectiousness is a mosquito adaptation that increases fitness during infection. Methods: We measured the impact of immune challenge and blood feeding on the fitness of individual mosquitoes. After an initial blood meal, Anopheles stephensi Liston mosquitoes were experimentally challenged with heat-killed E. coli at a dose known to mimic the same temporal changes in mosquito feeding behavior as active malaria infection. We then tracked daily egg production and survivorship of females maintained on blood-feeding regimes that either mimicked down-regulated feeding behaviors observed during early malaria infection, or were fed on a four-day feeding cycle typically associated with uninfected mosquitoes. Results: Restricting access to blood meals enhanced mosquito survival but lowered lifetime reproduction. Immune-challenge did not impact either fitness component. Combining fecundity and survival to estimate the population-scale intrinsic rate of increase (r), we found that, contrary to the mosquito adaptation hypothesis, mosquito fitness decreased if blood feeding was delayed following an immune challenge. Conclusions: Our data provide no support for the idea that malaria-induced suppression of blood feeding is an adaptation by mosquitoes to reduce the impact of immune challenge. Alternatively, the behavioral alterations may be neither host nor parasite adaptations, but rather a consequence of constraints imposed on feeding by activation of the mosquito immune response, i.e. non-adaptive illness-induced anorexia. Future work incorporating field conditions and different immune challenges could further clarify the effect of altered feeding on mosquito and parasite fitness.
UR - http://www.scopus.com/inward/record.url?scp=84962696050&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84962696050&partnerID=8YFLogxK
U2 - 10.1186/s13071-016-1392-x
DO - 10.1186/s13071-016-1392-x
M3 - Article
C2 - 26927687
AN - SCOPUS:84962696050
SN - 1756-3305
VL - 9
JO - Parasites and Vectors
JF - Parasites and Vectors
IS - 1
M1 - 113
ER -