Abstract
Chronic treatment with the immunosuppressive drug rapamycin leads to hypertension; however, the mechanisms are unknown. Rapamycin binds FK506 binding protein 12 and its related isoform 12.6 (FKBP12/12.6) and displaces them from intracellular Ca release channels (ryanodine receptors) eliciting a Ca leak from the endoplasmic/sarcoplasmic reticulum. We tested whether this Ca leak promotes conventional protein kinase C-mediated endothelial NO synthase phosphorylation at Thr495, which reduces production of the vasodilator NO. Rapamycin treatment of control mice for 7 days, as well as genetic deletion of FKBP12.6, increased systolic arterial pressure significantly compared with controls. Untreated aortas from FKBP12.6 mice and in vitro rapamycin-treated control aortas had similarly decreased endothelium-dependent relaxation responses and NO production and increased endothelial NO synthase Thr495 phosphorylation and protein kinase C activity. Inhibition of either conventional protein kinase C or ryanodine receptor restored endothelial NO synthase Thr495 phosphorylation and endothelial function to control levels. Rapamycin induced a small increase in basal intracellular Ca levels in isolated endothelial cells, and rapamycin or FKBP12.6 gene deletion decreased acetylcholine-induced intracellular Ca release, all of which were reversed by ryanodine. These data demonstrate that displacement of FKBP12/12.6 from ryanodine receptors induces an endothelial intracellular Ca leak and increases conventional protein kinase C-mediated endothelial NO synthase Thr495 phosphorylation leading to decreased NO production and endothelial dysfunction. This molecular mechanism may, in part, explain rapamycin-induced hypertension.
Original language | English (US) |
---|---|
Pages (from-to) | 569-576 |
Number of pages | 8 |
Journal | Hypertension |
Volume | 49 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2007 |
All Science Journal Classification (ASJC) codes
- Internal Medicine