FLEET: A Redshift-agnostic Machine Learning Pipeline to Rapidly Identify Hydrogen-poor Superluminous Supernovae

Sebastian Gomez, Edo Berger, Peter K. Blanchard, Griffin Hosseinzadeh, Matt Nicholl, V. Ashley Villar, Yao Yin

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Fingerprint

Dive into the research topics of 'FLEET: A Redshift-agnostic Machine Learning Pipeline to Rapidly Identify Hydrogen-poor Superluminous Supernovae'. Together they form a unique fingerprint.

Physics & Astronomy

Earth & Environmental Sciences