Flexible and robust co-regularized multi-domain graph clustering

Wei Cheng, Xiang Zhang, Zhishan Guo, Yubao Wu, Patrick F. Sullivan, Wei Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

63 Scopus citations

Abstract

Multi-view graph clustering aims to enhance clustering performance by integrating heterogeneous information collected in different do- mains. Each domain provides a different view of the data instances. Leveraging cross-domain information has been demonstrated an effective way to achieve better clustering results. Despite the previous success, existing multi-view graph clustering methods usually assume that different views are available for the same set of in- stances. Thus instances in different domains can be treated as having strict one-To-one relationship. In many real-life applications, however, data instances in one domain may correspond to multiple instances in another domain. Moreover, relationships between in- stances in different domains may be associated with weights based on prior (partial) knowledge. In this paper, we propose a flexible and robust framework, CGC (Co-regularized Graph Clustering), based on non-negative matrix factorization (NMF), to tackle these challenges. CGC has several advantages over the existing method- s. First, it supports many-To-many cross-domain instance relation- ship. Second, it incorporates weight on cross-domain relationship. Third, it allows partial cross-domain mapping so that graphs in different domains may have different sizes. Finally, it provides users with the extent to which the cross-domain instance relationship violates the in-domain clustering structure, and thus enables users to re-evaluate the consistency of the relationship. Extensive experimental results on UCI benchmark data sets, newsgroup data sets and biological interaction networks demonstrate the effectiveness of our approach.

Original languageEnglish (US)
Title of host publicationKDD 2013 - 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
EditorsRajesh Parekh, Jingrui He, Dhillon S. Inderjit, Paul Bradley, Yehuda Koren, Rayid Ghani, Ted E. Senator, Robert L. Grossman, Ramasamy Uthurusamy
PublisherAssociation for Computing Machinery
Pages320-328
Number of pages9
ISBN (Electronic)9781450321747
DOIs
StatePublished - Aug 11 2013
Event19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013 - Chicago, United States
Duration: Aug 11 2013Aug 14 2013

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
VolumePart F128815

Other

Other19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013
Country/TerritoryUnited States
CityChicago
Period8/11/138/14/13

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Flexible and robust co-regularized multi-domain graph clustering'. Together they form a unique fingerprint.

Cite this