Abstract
Networks of neurons in some brain areas are flexible enough to encode new memories quickly. Using a standard firing rate model of recurrent networks, we develop a theory of flexible memory networks. Our main results characterize networks having the maximal number of flexible memory patterns, given a constraint graph on the network's connectivity matrix. Modulo a mild topological condition, we find a close connection between maximally flexible networks and rank 1 matrices. The topological condition is H 1(X;ℤ)=0, where X is the clique complex associated to the network's constraint graph; this condition is generically satisfied for large random networks that are not overly sparse. In order to prove our main results, we develop some matrix-theoretic tools and present them in a self-contained section independent of the neuroscience context.
Original language | English (US) |
---|---|
Pages (from-to) | 590-614 |
Number of pages | 25 |
Journal | Bulletin of Mathematical Biology |
Volume | 74 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2012 |
All Science Journal Classification (ASJC) codes
- General Neuroscience
- Immunology
- General Mathematics
- General Biochemistry, Genetics and Molecular Biology
- General Environmental Science
- Pharmacology
- General Agricultural and Biological Sciences
- Computational Theory and Mathematics