Abstract
Dynamic measures of human populations are critical for global health management but are often overlooked, largely because they are difficult to quantify. Measuring human population dynamics can be prohibitively expensive in under-resourced communities. Satellite imagery can provide measurements of human populations, past and present, to complement public health analyses and interventions. We used anthropogenic illumination from publicly accessible, serial satellite nighttime images as a quantifiable proxy for seasonal population variation in five urban areas in Niger and Nigeria. We identified population fluxes as the mechanistic driver of regional seasonal measles outbreaks. Our data showed 1) urban illumination fluctuated seasonally, 2) corresponding population fluctuations were sufficient to drive seasonal measles outbreaks, and 3) overlooking these fluctuations during vaccination activities resulted in below-target coverage levels, incapable of halting transmission of the virus. We designed immunization solutions capable of achieving above-target coverage of both resident and mobile populations. Here, we provide detailed data on brightness from 2000–2005 for 5 cities in Niger and Nigeria and detailed methodology for application to other populations.
Original language | English (US) |
---|---|
Article number | 180256 |
Journal | Scientific Data |
Volume | 5 |
DOIs | |
State | Published - 2018 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Information Systems
- Education
- Computer Science Applications
- Statistics, Probability and Uncertainty
- Library and Information Sciences