Abstract
This paper reported a facile method for fabricating a functionalized fluorescent graphene oxide (GO) by covalently grafting the amine-modified mesoporous silica nanoparticles (MSNs) containing poly(p-phenylenevinylene) (PPV) and lactam of Rhodamine 6G (SRh6G) inside the channel of MSNs. The resulted GO-PPV@MSN-NH2@SRh6G fluorescent hybrid nanoparticles had a good dispersion and strong green fluorescence in aqueous solution. This hybrid material can be used as a fluorescent ratiometric probe to detect Hg2+ in the water through fluorescence resonance energy transfer (FRET). Upon the addition of only Hg2+ ions, the mission corresponding to the ring-opened form of rhodamine appeared at 550 nm with a simultaneous emission quenching of PPV at 494 nm. This ratiometric fluorescence change indicated that an FRET from the PPV to rhodamine was triggered by Hg2+ ions. The hybrid nanoparticles of GO-PPV@MSN-NH2@SRh6G could be used as a novel fluorescent probe to carry out the quantitative detection of Hg2+ with a detection limit of 7.1 × 10-8 M.
Original language | English (US) |
---|---|
Pages (from-to) | 181-189 |
Number of pages | 9 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 206 |
DOIs | |
State | Published - Jan 2015 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry