Fluorescent Oligonucleotides and Deoxynucleotide Triphosphates: Preparation and Their Interaction with the Large (Klenow) Fragment of Escherichia coli DNA Polymerase I

Dwayne J. Allen, Paul L. Darke, Stephen J. Benkovic

Research output: Contribution to journalArticlepeer-review

66 Scopus citations

Abstract

Fluorescent derivatives of short oligonucleotides of defined sequence were prepared by the incorporation of 5-(propylamino)uridine via current phosphoramidite chemistry, followed by derivatization of the propylamine function with mansyl chloride. These oligomers, annealed to complementary oligomers, yielded short duplex DNA fluorescently labeled at a specific base. The fluorescence emission from this labeled duplex increases upon binding to the Klenow fragment of DNA polymerase I (KF) at specific positions within the duplex DNA. By varying the position of the label within the duplex DNA and observing the emission, points of strong enzyme-DNA interactions were elucidated. A similar fluorescent derivative of a deoxynucleoside triphosphate (dNTP), 5-[[[[[[(5-sulfonaphthalenyl)amino]ethyl]amino]carbonyl]-methyl]thio]-2'-deoxyuridine 5'-triphosphate (AEDANS-S-dUTP), was synthesized, whose emission also was increased upon binding to KF. The change in emission intensities between unbound and bound substrates enabled the measurements of KDs for the DNA and dNTP derivative, which were found to be 0.15 nM and 2.9 μM, respectively. Stopped-flow measurements on these species yielded association and dissociation rates for each. Anisotropy measurements of the labeled base at various positions in the duplex yielded values that support the measurements made by observing the emission intensities.

Original languageEnglish (US)
Pages (from-to)4601-4607
Number of pages7
JournalBiochemistry
Volume28
Issue number11
DOIs
StatePublished - May 1 1989

All Science Journal Classification (ASJC) codes

  • Biochemistry

Fingerprint

Dive into the research topics of 'Fluorescent Oligonucleotides and Deoxynucleotide Triphosphates: Preparation and Their Interaction with the Large (Klenow) Fragment of Escherichia coli DNA Polymerase I'. Together they form a unique fingerprint.

Cite this