Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation

Jiyue Huang, Zhihao Cheng, Cong Wang, Yue Hong, Hang Su, Jun Wang, Gregory P. Copenhaver, Hong Ma, Yingxiang Wang

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two classes of cross-overs (COs): interference-sensitive (type I) and -insensitive (type II) COs. DNA synthesis is essential for meiotic recombination, but whether DNA synthesis has a role in differentiating meiotic CO pathways is unknown. Here, we show that Arabidopsis POL2A, the homolog of the yeast DNA polymerase-e (a leading-strand DNA polymerase), is required for plant fertility and meiosis. Mutations in POL2A cause reduced fertility and meiotic defects, including abnormal chromosome association, improper chromosome segregation, and fragmentation. Observation of prophase I cell distribution suggests that pol2a mutants likely delay progression of meiotic recombination. In addition, the residual COs in pol2a have reduced CO interference, and the double mutant of pol2a with mus81, which affects type II COs, displayed more severe defects than either single mutant, indicating that POL2A functions in the type I pathway. We hypothesize that sufficient leading-strand DNA elongation promotes formation of some type I COs. Given that meiotic recombination and DNA synthesis are conserved in divergent eukaryotes, this study and our previous study suggest a novel role for DNA synthesis in the differentiation of meiotic recombination pathways.

Original languageEnglish (US)
Pages (from-to)12534-12539
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number40
StatePublished - Oct 6 2015

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation'. Together they form a unique fingerprint.

Cite this