Abstract
Periodically-layered isolators exhibit transmissibility "stop bands", or frequency ranges in which there is very low transmissibility. An assumed modes method was used to model the three-dimensional elastic behavior of layered isolators. The approximating functions were formed as functions of the coordinate directions. A modal analysis was performed for a single elastomer and metal layer combination, or cell. A modal synthesis approach was then used to obtain a model of an n-celled isolator, from which isolator modal properties are determined. A procedure to calculate the frequency-dependent transmissibility of an isolator is described. This model of the dynamic behavior of layered isolators was validated with experiments. Analytical and experimental transmissibilities are compared, for test specimens having identical elastomer components, but different geometries and different numbers of cells. In addition, analytical and experimental transmissibilities are compared for geometrically similar test specimens with differing elastomeric damping properties. Finally, design optimization methodology is presented for layered isolators subject to various constraints. A simulated annealing algorithm is employed to determine optimal material properties, layer geometries, and number of cells.
Original language | English (US) |
---|---|
Pages (from-to) | 3690-3704 |
Number of pages | 15 |
Journal | Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference |
Volume | 5 |
State | Published - Jan 1 2001 |
Event | 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit Technical Papers - Seattle, WA, United States Duration: Apr 16 2001 → Apr 19 2001 |
All Science Journal Classification (ASJC) codes
- Architecture
- Materials Science(all)
- Aerospace Engineering
- Mechanics of Materials
- Mechanical Engineering