Fractal dimensions of marine snow determined from image analysis of in situ photographs

John R. Kilps, Bruce E. Logan, Alice L. Alldredge

Research output: Contribution to journalArticlepeer-review

84 Scopus citations

Abstract

Seventy seven in situ photographs of marine snow ranging in size from 1 to 60 mm were used to calculate one- and two-dimensional fractal dimensions, D1 and D2, in order to characterize aggregate morphology with respect to aggregate perimeter and cross-sectional area. The lowest fractal dimension of D2 = 1.28 ± 0.11 was calculated for marine snow aggregates composed predominantly of a single type of particle (e.g. diatoms or fecal pellets) containing large amounts of miscellaneous debris. Marine snow formed by the aggregation of fecal pellets (D2 = 1.34 ± 0.16), non-identifiable particles (amorphous, D2 = 1.63 ± 0.72), and diatoms (D2 = 1.86 ± 0.13) had increasingly larger fractal dimensions. When combined into a single group, all marine snow aggregates had a fractal dimension of 1.72 ± 0.07. Larvacean houses, formed originally from a single, nearly spherical particle, were found to have a D2 value close to the Euclidean value of 2. Based on fractal geometrical relationships, D2 should have been equal to previous estimates of D3, a three-dimensional fractal dimension. Instead, the D2 value of 1.72 for the combined group was larger than previous estimates of D3 of 1.39 and 1.52, probably because of the dominant influence of the diatom aggregates on the combined group. Diatom aggregates had the highest fractal dimensions and covered the widest size range of all categories of particles examined.

Original languageEnglish (US)
Pages (from-to)1159-1169
Number of pages11
JournalDeep-Sea Research Part I
Volume41
Issue number8
DOIs
StatePublished - Aug 1994

All Science Journal Classification (ASJC) codes

  • Oceanography
  • Aquatic Science

Fingerprint

Dive into the research topics of 'Fractal dimensions of marine snow determined from image analysis of in situ photographs'. Together they form a unique fingerprint.

Cite this