TY - JOUR
T1 - Fractile arrays
T2 - A new class of tiled arrays with fractal boundaries
AU - Werner, Douglas H.
AU - Kuhirun, Waroth
AU - Werner, Pingjuan L.
PY - 2004/8
Y1 - 2004/8
N2 - In this paper, a new class of antenna arrays are introduced, which we call fractile arrays. A fractile array is defined as any array with a fractal boundary contour that tiles the plane without gaps or overlaps. It will be shown that the unique geometrical features of fractiles may be exploited in order to make available a family of deterministic arrays that offer several highly desirable performance advantages over their conventional periodic planar array counterparts. Most notably, fractile arrays have no grating lobes even when the minimum spacing between elements is increased to at least one-wavelength. This has led to the development of a new design methodology for modular broadband low-sidelobe arrays that is based on fractal tilings. Several examples of fractile arrays will be considered including Peano-Gosper, terdragon, 6-terdragon, and fudgeflake arrays. Efficient iterative procedures for calculating the radiation patterns of these fractile arrays to arbitrary stage of growth P are also introduced in this paper.
AB - In this paper, a new class of antenna arrays are introduced, which we call fractile arrays. A fractile array is defined as any array with a fractal boundary contour that tiles the plane without gaps or overlaps. It will be shown that the unique geometrical features of fractiles may be exploited in order to make available a family of deterministic arrays that offer several highly desirable performance advantages over their conventional periodic planar array counterparts. Most notably, fractile arrays have no grating lobes even when the minimum spacing between elements is increased to at least one-wavelength. This has led to the development of a new design methodology for modular broadband low-sidelobe arrays that is based on fractal tilings. Several examples of fractile arrays will be considered including Peano-Gosper, terdragon, 6-terdragon, and fudgeflake arrays. Efficient iterative procedures for calculating the radiation patterns of these fractile arrays to arbitrary stage of growth P are also introduced in this paper.
UR - http://www.scopus.com/inward/record.url?scp=4344593935&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4344593935&partnerID=8YFLogxK
U2 - 10.1109/TAP.2004.832327
DO - 10.1109/TAP.2004.832327
M3 - Article
AN - SCOPUS:4344593935
SN - 0018-926X
VL - 52
SP - 2008
EP - 2018
JO - IEEE Transactions on Antennas and Propagation
JF - IEEE Transactions on Antennas and Propagation
IS - 8
ER -