TY - GEN
T1 - Fracture characterization during flowback with two-phase flow in tight and ultratight oil reservoirs
AU - Zhang, Fengyuan
AU - Emami-Meybodi, Hamid
N1 - Funding Information:
The first author gratefully acknowledges the support of SPE Foundation through the Nico van Wingen Memorial Graduate Fellowship in petroleum engineering and SME (Society for Mining, Metallurgy & Exploration) through the WAAIME Scholarship. This research was enabled with the use of the software packages provided by Computer Modelling Group, Inc. (CMG).
Publisher Copyright:
Copyright © 2020, Society of Petroleum Engineers
PY - 2020
Y1 - 2020
N2 - Flowback rate transient analysis (RTA) is a practical tool for characterizing hydraulic fracture (HF) properties. However, the accuracy of the interpreted results from flowback RTA is challenged by the complexity in two-phase flow in the hydraulic fracture and matrix system. Accordingly, we present a new semianalytical method to characterize HF attributes and dynamics using multi-phase flowback data for tight and ultratight (shale) oil wells. The proposed method includes a two-phase diagnostic plot, a fracture RTA approach for straight-line analysis, and a matrix model capable of characterizing water and oil flow. The RTA approach is based on fracture infinite acting linear flow (IALF) and boundary dominated flow (BDF) solutions, which treats HF as an open tank with a variable production rate at the well and the contribution of water and oil from matrix within the distance of investigation (DOI). The pressure-dependent fluid and geomechanical properties, such as permeability and porosity, are considered in the pseudotime defined in fracture and matrix to reduce the nonlinearity of the system. We tested the accuracy of the proposed method against numerical results obtained from commercial software. The validation results confirm that our method can closely calculate water and oil influx from matrix as well as the average pressure and saturation in the HF and matrix DOI. The accurate estimation of the initial fracture permeability and pore volume demonstrates the applicability of the proposed method in quantifying HF properties from two-phase flowback data exhibiting fracture IALF and BDF regimes. The analysis results show that the estimated initial fracture pore volume shows more accuracy than initial fracture permeability due to the different calculation sources in the straight-line analysis. In short, the proposed method is, to our best knowledge, the first RTA approach incorporating the two-phase water and oil influx from matrix into the inverse analysis of fracture properties and dynamics using straight-line analysis, instead of history matching.
AB - Flowback rate transient analysis (RTA) is a practical tool for characterizing hydraulic fracture (HF) properties. However, the accuracy of the interpreted results from flowback RTA is challenged by the complexity in two-phase flow in the hydraulic fracture and matrix system. Accordingly, we present a new semianalytical method to characterize HF attributes and dynamics using multi-phase flowback data for tight and ultratight (shale) oil wells. The proposed method includes a two-phase diagnostic plot, a fracture RTA approach for straight-line analysis, and a matrix model capable of characterizing water and oil flow. The RTA approach is based on fracture infinite acting linear flow (IALF) and boundary dominated flow (BDF) solutions, which treats HF as an open tank with a variable production rate at the well and the contribution of water and oil from matrix within the distance of investigation (DOI). The pressure-dependent fluid and geomechanical properties, such as permeability and porosity, are considered in the pseudotime defined in fracture and matrix to reduce the nonlinearity of the system. We tested the accuracy of the proposed method against numerical results obtained from commercial software. The validation results confirm that our method can closely calculate water and oil influx from matrix as well as the average pressure and saturation in the HF and matrix DOI. The accurate estimation of the initial fracture permeability and pore volume demonstrates the applicability of the proposed method in quantifying HF properties from two-phase flowback data exhibiting fracture IALF and BDF regimes. The analysis results show that the estimated initial fracture pore volume shows more accuracy than initial fracture permeability due to the different calculation sources in the straight-line analysis. In short, the proposed method is, to our best knowledge, the first RTA approach incorporating the two-phase water and oil influx from matrix into the inverse analysis of fracture properties and dynamics using straight-line analysis, instead of history matching.
UR - http://www.scopus.com/inward/record.url?scp=85095720977&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095720977&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85095720977
T3 - Proceedings - SPE Annual Technical Conference and Exhibition
BT - Society of Petroleum Engineers - SPE Annual Technical Conference and Exhibition 2020, ATCE 2020
PB - Society of Petroleum Engineers (SPE)
T2 - SPE Annual Technical Conference and Exhibition 2020, ATCE 2020
Y2 - 26 October 2020 through 29 October 2020
ER -