Free Energy as a Dynamical Invariant (or Can You Hear the Shape of a Potential?)

Mark Pollicott, Howard Weiss

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Classical lattice spin systems provide an important and illuminating family of models in statistical physics. An interaction φ on a lattice L ⊂ ℤd determines a lattice spin system with potential A φ. The pressure P(Aφ) and free energy F ,(β) = -(1/β)P(βAφ) are fundamental characteristics of the system. However, even for the simplest lattice spin systems, the information about the potential that the free energy captures is subtle and poorly understood. We study whether, or to what extent, (microscopic) potentials are determined by their (macroscopic) free energy. In particular, we show that for a one-dimensional lattice spin system, the free energy of finite range interactions typically determines the potential, up to natural equivalence, and there is always at most a finite ambiguity; we exhibit exceptional potentials where uniqueness fails; and we establish deformation rigidity for the free energy. The proofs use a combination of thermodynamic formalism, algebraic geometry, and matrix algebra. In the language of dynamical systems, we study whether a Hölder continuous potential for a subshift of finite type is naturally determined by its periodic orbit invariants: orbit spectra (Birkhoff sums over periodic orbits with various types of labeling), beta function (essentially the free energy), or zeta function. These rigidity problems have striking analogies to fascinating questions in spectral geometry that Kac adroitly summarized with the question "Can you hear the shape of a drum?".

Original languageEnglish (US)
Pages (from-to)457-482
Number of pages26
JournalCommunications In Mathematical Physics
Issue number3
StatePublished - Sep 2003

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics


Dive into the research topics of 'Free Energy as a Dynamical Invariant (or Can You Hear the Shape of a Potential?)'. Together they form a unique fingerprint.

Cite this