TY - JOUR
T1 - Free hydroxyl radical is not involved in an important reaction of lignin degradation by Phanerochaete chrysosporium Burds.
AU - Kirk, T. K.
AU - Mozuch, M. D.
AU - Tien, M.
PY - 1985/3/1
Y1 - 1985/3/1
N2 - Hydroxyl radical (HO.) has been implicated in the degradation of lignin by Phanerochaete chrysosporium. This study assessed the possible involvement of HO. in degradation of lignin substructural models by intact cultures and by an extracellular ligninase isolated from the cultures. Two non-phenolic lignin model compounds [aryl-C(alpha)HOH-C(beta)HR-C(gamma)H2OH, in which R = aryl (beta-1) or R = O-aryl (beta-O-4)] were degraded by cultures, by the purified ligninase, and by Fenton's reagent (H2O2 + Fe2+), which generates HO.. The ligninase and the cultures formed similar products, derived via an initial cleavage between C(alpha) and C(beta) (known to be an important biodegradative reaction), indicating that the ligninase is responsible for model degradation in cultures. Products from the Fenton degradation were mainly polar phenolics that exhibited little similarity to those from the biological systems. Mass-spectral analysis, however, revealed traces of the same products in the Fenton reaction as seen in the biological reactions; even so, an 18O2-incorporation study showed that the mechanism of formation differed. E.s.r. spectroscopy with a spin-trapping agent readily detected HO. in the Fenton system, but indicated that no HO. is formed during ligninase catalysis. We conclude, therefore that HO. is not involved in fungal C(alpha)-C(beta) cleavage in the beta-1 and beta-O-4 models and, by extension, in the same reaction in lignin.
AB - Hydroxyl radical (HO.) has been implicated in the degradation of lignin by Phanerochaete chrysosporium. This study assessed the possible involvement of HO. in degradation of lignin substructural models by intact cultures and by an extracellular ligninase isolated from the cultures. Two non-phenolic lignin model compounds [aryl-C(alpha)HOH-C(beta)HR-C(gamma)H2OH, in which R = aryl (beta-1) or R = O-aryl (beta-O-4)] were degraded by cultures, by the purified ligninase, and by Fenton's reagent (H2O2 + Fe2+), which generates HO.. The ligninase and the cultures formed similar products, derived via an initial cleavage between C(alpha) and C(beta) (known to be an important biodegradative reaction), indicating that the ligninase is responsible for model degradation in cultures. Products from the Fenton degradation were mainly polar phenolics that exhibited little similarity to those from the biological systems. Mass-spectral analysis, however, revealed traces of the same products in the Fenton reaction as seen in the biological reactions; even so, an 18O2-incorporation study showed that the mechanism of formation differed. E.s.r. spectroscopy with a spin-trapping agent readily detected HO. in the Fenton system, but indicated that no HO. is formed during ligninase catalysis. We conclude, therefore that HO. is not involved in fungal C(alpha)-C(beta) cleavage in the beta-1 and beta-O-4 models and, by extension, in the same reaction in lignin.
UR - http://www.scopus.com/inward/record.url?scp=0022033122&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0022033122&partnerID=8YFLogxK
U2 - 10.1042/bj2260455
DO - 10.1042/bj2260455
M3 - Article
C2 - 2986597
AN - SCOPUS:0022033122
SN - 0264-6021
VL - 226
SP - 455
EP - 460
JO - The Biochemical journal
JF - The Biochemical journal
IS - 2
ER -