Frequency coverage properties of a uniform shrinkage prior distribution

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

A uniform shrinkage prior (USP) distribution on the unknown variance component of a random-effects model is known to produce good frequency properties. The USP has a parameter that determines the shape of its density function, but it has been neglected whether the USP can maintain such good frequency properties regardless of the choice for the shape parameter. We investigate which choice for the shape parameter of the USP produces Bayesian interval estimates of random effects that meet their nominal confidence levels better than several existent choices in the literature. Using univariate and multivariate Gaussian hierarchical models, we show that the USP can achieve its best frequency properties when its shape parameter makes the USP behave similarly to an improper flat prior distribution on the unknown variance component.

Original languageEnglish (US)
Pages (from-to)2929-2939
Number of pages11
JournalJournal of Statistical Computation and Simulation
Volume87
Issue number15
DOIs
StatePublished - Oct 13 2017

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Modeling and Simulation
  • Statistics, Probability and Uncertainty
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Frequency coverage properties of a uniform shrinkage prior distribution'. Together they form a unique fingerprint.

Cite this