Frequency stabilization in nonlinear micromechanical oscillators

Dario Antonio, Damián H. Zanette, Daniel López

Research output: Contribution to journalArticlepeer-review

359 Scopus citations

Abstract

Mechanical oscillators are present in almost every electronic device. They mainly consist of a resonating element providing an oscillating output with a specific frequency. Their ability to maintain a determined frequency in a specified period of time is the most important parameter limiting their implementation. Historically, quartz crystals have almost exclusively been used as the resonating element, but micromechanical resonators are increasingly being considered to replace them. These resonators are easier to miniaturize and allow for monolithic integration with electronics. However, as their dimensions shrink to the microscale, most mechanical resonators exhibit nonlinearities that considerably degrade the frequency stability of the oscillator. Here we demonstrate that, by coupling two different vibrational modes through an internal resonance, it is possible to stabilize the oscillation frequency of nonlinear self-sustaining micromechanical resonators. Our findings provide a new strategy for engineering low-frequency noise oscillators capitalizing on the intrinsic nonlinear phenomena of micromechanical resonators.

Original languageEnglish (US)
Article number806
JournalNature communications
Volume3
DOIs
StatePublished - 2012

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Frequency stabilization in nonlinear micromechanical oscillators'. Together they form a unique fingerprint.

Cite this