TY - JOUR
T1 - Frictional controls on the seismogenic zone
T2 - Insights from the Apenninic basement, Central Italy
AU - Volpe, G.
AU - Pozzi, G.
AU - Carminati, E.
AU - Barchi, M. R.
AU - Scuderi, M. M.
AU - Tinti, E.
AU - Aldega, L.
AU - Marone, C.
AU - Collettini, C.
N1 - Publisher Copyright:
© 2022 The Author(s)
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Crustal seismicity is in general confined within the seismogenic layer, which is bounded at depth by processes related to the brittle-ductile transition (BDT) and in the shallow region by fault zone consolidation state and mineralogy. In the past 10-15 years, high resolution seismological and geodetic data have shown that faulting within and around the traditional seismogenic zone occurs in a large variety of slip modes. Frictional and structural heterogeneities have been invoked to explain such differences in fault slip mode and behaviour. However, an integrated and comprehensive picture remains extremely challenging because of difficulties to properly characterize fault rocks at seismogenic depths. Thus, the central-northern Apennines provide a unique opportunity because of the integration of deep-borehole stratigraphy and seismic reflection profiles with high resolution seismological data and outcrop studies. These works show that seismic sequences are limited within the sedimentary cover (depth < 9-10 km), suggesting that the underlaying basement plays a key-role in dictating the lower boundary of the seismogenic zone. Here we integrate structural data on exhumed outcrops of basement rocks with laboratory friction data to shed light on the mechanics of the Apenninic basement. Structural data highlight heterogeneous and pervasive deformation where foliated and phyllosilicate-rich rocks surround more competent quartz-rich lenses up to hundreds of meters in thickness. Phyllosilicate horizons deform predominantly by folding and foliation-parallel frictional sliding whereas quartz-rich lenses are characterized by brittle signatures represented by extensive fracturing and minor faulting. Laboratory experiments revealed that quartz-rich lithologies have relatively high friction, μ≈0.51, velocity-strengthening to neutral behaviour, and elevated healing rates. On the contrary, phyllosilicate-rich (muscovite and chlorite) lithologies show low friction, 0.23 < μ < 0.31, a marked velocity strengthening behaviour that increases with increasing sliding velocity and negligible rates of frictional healing. Our integrated approach suggests that in the Apenninic basement deformation occurs along shear zones distributed on thickness up-to several kilometres, where the frictionally stable, foliated, and phyllosilicate-rich horizons favour aseismic deformation and therefore confine the depth of major earthquake ruptures and the seismogenic zone.
AB - Crustal seismicity is in general confined within the seismogenic layer, which is bounded at depth by processes related to the brittle-ductile transition (BDT) and in the shallow region by fault zone consolidation state and mineralogy. In the past 10-15 years, high resolution seismological and geodetic data have shown that faulting within and around the traditional seismogenic zone occurs in a large variety of slip modes. Frictional and structural heterogeneities have been invoked to explain such differences in fault slip mode and behaviour. However, an integrated and comprehensive picture remains extremely challenging because of difficulties to properly characterize fault rocks at seismogenic depths. Thus, the central-northern Apennines provide a unique opportunity because of the integration of deep-borehole stratigraphy and seismic reflection profiles with high resolution seismological data and outcrop studies. These works show that seismic sequences are limited within the sedimentary cover (depth < 9-10 km), suggesting that the underlaying basement plays a key-role in dictating the lower boundary of the seismogenic zone. Here we integrate structural data on exhumed outcrops of basement rocks with laboratory friction data to shed light on the mechanics of the Apenninic basement. Structural data highlight heterogeneous and pervasive deformation where foliated and phyllosilicate-rich rocks surround more competent quartz-rich lenses up to hundreds of meters in thickness. Phyllosilicate horizons deform predominantly by folding and foliation-parallel frictional sliding whereas quartz-rich lenses are characterized by brittle signatures represented by extensive fracturing and minor faulting. Laboratory experiments revealed that quartz-rich lithologies have relatively high friction, μ≈0.51, velocity-strengthening to neutral behaviour, and elevated healing rates. On the contrary, phyllosilicate-rich (muscovite and chlorite) lithologies show low friction, 0.23 < μ < 0.31, a marked velocity strengthening behaviour that increases with increasing sliding velocity and negligible rates of frictional healing. Our integrated approach suggests that in the Apenninic basement deformation occurs along shear zones distributed on thickness up-to several kilometres, where the frictionally stable, foliated, and phyllosilicate-rich horizons favour aseismic deformation and therefore confine the depth of major earthquake ruptures and the seismogenic zone.
UR - http://www.scopus.com/inward/record.url?scp=85126813372&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126813372&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2022.117444
DO - 10.1016/j.epsl.2022.117444
M3 - Article
AN - SCOPUS:85126813372
SN - 0012-821X
VL - 583
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
M1 - 117444
ER -