TY - GEN
T1 - Full-coverage film cooling with short normal injection holes
AU - Harrington, Mark K.
AU - McWaters, Marcus A.
AU - Bogard, David G.
AU - Lemmon, Christopher A.
AU - Thole, Karen A.
PY - 2001
Y1 - 2001
N2 - An experimental and computational investigation was conducted on the film cooling adiabatic effectiveness of a flat plate with full coverage film cooling. The full coverage film cooling array was comprised of ten rows of coolant holes, arranged in a staggered pattern, with short, L/D = 1, normal coolant holes. A single row of coolant holes was also examined to determine the accuracy of a superposition prediction of the full coverage adiabatic effectiveness performance. Large density coolant jets and high mainstream turbulence conditions were utilized to simulate realistic engine conditions. High-resolution adiabatic effectiveness measurements were obtained using infrared imaging techniques and a large-scale flat plate model. Optimum adiabatic effectiveness was found to occur for a blowing ratio of M = 0.65. At this blowing ratio separation of the coolant jet immediately downstream of the hole was observed. For M = 0.65, the high mainstream turbulence decreased the spatially averaged effectiveness level by 12 percent. The high mainstream turbulence produced a larger effect for lower blowing ratios. The superposition model based on single row effectiveness results over-predicted the full coverage effectiveness levels.
AB - An experimental and computational investigation was conducted on the film cooling adiabatic effectiveness of a flat plate with full coverage film cooling. The full coverage film cooling array was comprised of ten rows of coolant holes, arranged in a staggered pattern, with short, L/D = 1, normal coolant holes. A single row of coolant holes was also examined to determine the accuracy of a superposition prediction of the full coverage adiabatic effectiveness performance. Large density coolant jets and high mainstream turbulence conditions were utilized to simulate realistic engine conditions. High-resolution adiabatic effectiveness measurements were obtained using infrared imaging techniques and a large-scale flat plate model. Optimum adiabatic effectiveness was found to occur for a blowing ratio of M = 0.65. At this blowing ratio separation of the coolant jet immediately downstream of the hole was observed. For M = 0.65, the high mainstream turbulence decreased the spatially averaged effectiveness level by 12 percent. The high mainstream turbulence produced a larger effect for lower blowing ratios. The superposition model based on single row effectiveness results over-predicted the full coverage effectiveness levels.
UR - http://www.scopus.com/inward/record.url?scp=77958593120&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77958593120&partnerID=8YFLogxK
U2 - 10.1115/2001-GT-0130
DO - 10.1115/2001-GT-0130
M3 - Conference contribution
AN - SCOPUS:77958593120
SN - 9780791878521
T3 - Proceedings of the ASME Turbo Expo
BT - Heat Transfer; Electric Power; Industrial and Cogeneration
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2001: Power for Land, Sea, and Air, GT 2001
Y2 - 4 June 2001 through 7 June 2001
ER -