TY - JOUR
T1 - Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles
AU - Scully, Erin D.
AU - Geib, Scott M.
AU - Carlson, John E.
AU - Tien, Ming
AU - McKenna, Duane
AU - Hoover, Kelli
N1 - Funding Information:
Funding for this project was provided by USDA-NRI-CRSEES grant 2008-35504-04464, USDA-NRI-CREES grant 2009-35302-05286, the Alphawood Foundation, Chicago, Illinois, a Seed Grant to Dr. Hoover from the Pennsylvania State University College of Agricultural Sciences, and a Microbial Genomics Fellowship from USDA-AFRI to EDS. Dr. Carlson was partially supported by World Class University Project R31-2009-000-20025-0 grant from the Ministry of Education, Science and Technology of South Korea. Opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the USDA. USDA is an equal opportunity provider and employer.
Funding Information:
Illumina GAIIx and HiSeq 2000 sequencing were performed at the University of Delaware Biotechnology Institute. 16S and ITS amplicon sequencing were performed at the Pennsylvania State University Genomics Core Facility-University Park, PA. Trinity assembly and BLAST and Pfam searches were performed using computing resources at the Hawaii Open Supercomputing Center at University of Hawaii (Jaws cluster; Maui, HI), the Research Computing and Cyberinfrastructure Group at The Pennsylvania State University (LionX clusters; University Park, PA), the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575XSEDE under allocation TG-MCB140032 to SMG, and USDA-ARS Pacific Basin Agricultural Research Center (Moana cluster; Hilo, HI). We thank David Long, Katie Cassidy, and Karen Ferlez for assistance with insect rearing, Drs. Deb Gove and Greg Grove for assistance with 16S and ITS amplicon library construction and sequencing, Dr. Bruce Kingham for assistance with Illumina library construction and sequencing, and Dr. Stephen Richards and the Baylor College of Medicine Human Genome Sequencing Center i5K Pilot project staff for access to pre-publication data from the A. glabripennis genome. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2014 Scully et al.
PY - 2014/12/12
Y1 - 2014/12/12
N2 - Background: Wood-feeding beetles harbor an ecologically rich and taxonomically diverse assemblage of gut microbes that appear to promote survival in woody tissue, which is devoid of nitrogen and essential nutrients. Nevertheless, the contributions of these apparent symbionts to digestive physiology and nutritional ecology remain uncharacterized in most beetle lineages. Results: Through parallel transcriptome profiling of beetle- and microbial- derived mRNAs, we demonstrate that the midgut microbiome of the Asian longhorned beetle (Anoplophora glabripennis), a member of the beetle family Cerambycidae, is enriched in biosynthetic pathways for the synthesis of essential amino acids, vitamins, and sterols. Consequently, the midgut microbiome of A. glabripennis can provide essential nutrients that the beetle cannot obtain from its woody diet or synthesize itself. The beetle gut microbiota also produce their own suite of transcripts that can enhance lignin degradation, degrade hemicellulose, and ferment xylose and wood sugars. An abundance of cellulases from several glycoside hydrolase families are expressed endogenously by A. glabripennis, as well as transcripts that allow the beetle to convert microbe-synthesized essential amino acids into non-essential amino acids. A. glabripennis and its gut microbes likely collaborate to digest carbohydrates and convert released sugars and amino acid intermediates into essential nutrients otherwise lacking from their woody host plants. Conclusions: The nutritional provisioning capabilities of the A. glabripennis gut microbiome may contribute to the beetles' unusually broad host range. The presence of some of the same microbes in the guts of other Cerambycidae and other wood-feeding beetles suggests that partnerships with microbes may be a facilitator of evolutionary radiations in beetles, as in certain other groups of insects, allowing access to novel food sources through enhanced nutritional provisioning.
AB - Background: Wood-feeding beetles harbor an ecologically rich and taxonomically diverse assemblage of gut microbes that appear to promote survival in woody tissue, which is devoid of nitrogen and essential nutrients. Nevertheless, the contributions of these apparent symbionts to digestive physiology and nutritional ecology remain uncharacterized in most beetle lineages. Results: Through parallel transcriptome profiling of beetle- and microbial- derived mRNAs, we demonstrate that the midgut microbiome of the Asian longhorned beetle (Anoplophora glabripennis), a member of the beetle family Cerambycidae, is enriched in biosynthetic pathways for the synthesis of essential amino acids, vitamins, and sterols. Consequently, the midgut microbiome of A. glabripennis can provide essential nutrients that the beetle cannot obtain from its woody diet or synthesize itself. The beetle gut microbiota also produce their own suite of transcripts that can enhance lignin degradation, degrade hemicellulose, and ferment xylose and wood sugars. An abundance of cellulases from several glycoside hydrolase families are expressed endogenously by A. glabripennis, as well as transcripts that allow the beetle to convert microbe-synthesized essential amino acids into non-essential amino acids. A. glabripennis and its gut microbes likely collaborate to digest carbohydrates and convert released sugars and amino acid intermediates into essential nutrients otherwise lacking from their woody host plants. Conclusions: The nutritional provisioning capabilities of the A. glabripennis gut microbiome may contribute to the beetles' unusually broad host range. The presence of some of the same microbes in the guts of other Cerambycidae and other wood-feeding beetles suggests that partnerships with microbes may be a facilitator of evolutionary radiations in beetles, as in certain other groups of insects, allowing access to novel food sources through enhanced nutritional provisioning.
UR - http://www.scopus.com/inward/record.url?scp=84924333795&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84924333795&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-15-1096
DO - 10.1186/1471-2164-15-1096
M3 - Article
C2 - 25495900
AN - SCOPUS:84924333795
SN - 1471-2164
VL - 15
JO - BMC genomics
JF - BMC genomics
IS - 1
M1 - 1096
ER -