Abstract
As overfertilization leads to environmental concerns and the cost of N fertilizer increases, the issue of how to select crop cultivars that can produce high yields on N-deficient soils has become crucially important. However, little information is known about the genetic mechanisms by which crops respond to environmental changes induced by N signaling. Here, we dissected the genetic architecture of N-induced phenotypic plasticity in bread wheat (Triticum aestivum L.) by integrating functional mapping and semiautomatic high-throughput phenotyping data of yield-related canopy architecture. We identified a set of quantitative trait loci (QTLs) that determined the pattern and magnitude of how wheat cultivars responded to low N stress from normal N supply throughout the wheat life cycle. This analysis highlighted the phenological landscape of genetic effects exerted by individual QTLs, as well as their interactions with N-induced signals and with canopy measurement angles. This information may shed light on our mechanistic understanding of plant adaptation and provide valuable information for the breeding of N-deficiency tolerant wheat varieties.
Original language | English (US) |
---|---|
Pages (from-to) | 1105-1119 |
Number of pages | 15 |
Journal | Plant Journal |
Volume | 97 |
Issue number | 6 |
DOIs | |
State | Published - Mar 2019 |
All Science Journal Classification (ASJC) codes
- Genetics
- Plant Science
- Cell Biology