TY - CHAP
T1 - Functional polyolefins
T2 - Synthesis and energy storage applications
AU - Chung, T. C.Mike
PY - 2014
Y1 - 2014
N2 - This chapter discusses our research into the functionalization of polyolefins (PE, PP etc.) that contain polar groups (such as OH and NH 2) in the side chains and chain end, as well as polyolefin graft and block copolymers containing both a polyolefin block and functional polymer blocks (acrylic and methacrylate polymers). In the late 1980s, our research on the functionalization of polyolefins was inspired by the development of homogeneous, single-site metallocene catalysts that showed excellent copolymerization capabilities and a well-controlled polymerization mechanism. We were curious to know how to apply this newly available technology to the direct polymerization (in-reactor) process to circumvent the inevitable deactivation of the transition metal cationic active site by functional (polar) groups containing basic O, N, and halides. Throughout the past two decades, we have developed an effective approach that is centered on specially designed "reactive" comonomers and chain transfer agents. These can deliver three essential properties during the polymerization process: (1) stability (no side reaction) of the active site; (2) solubility in the polymerization media for effective incorporation; and (3) versatility for interconversion to desirable functional groups under mild reaction conditions after polymerization (preferably a one-pot process). With the conjunction of suitable metallocene catalysts, a broad range of polyolefins with "reactive" sites in the side chains or chain end were prepared, and the incorporated reactive groups were interconverted into functional groups to form side-chain-or chain-end-functionalized polyolefins. Some active sites were also transformed into "living" radical or anionic initiator to initiate graft-from polymerization of polar monomers to obtain polyolefin graft and block copolymers (such as PP-g-PMMA and PP-b-PMMA). The resulting functional polyolefins show many desirable properties and applications. This chapter focuses on applications in the area of energy storage. Specifically, I will discuss the usage of new functional polypropylene polymers in the formation of dielectric thin films in capacitors that show significantly higher energy and power densities.
AB - This chapter discusses our research into the functionalization of polyolefins (PE, PP etc.) that contain polar groups (such as OH and NH 2) in the side chains and chain end, as well as polyolefin graft and block copolymers containing both a polyolefin block and functional polymer blocks (acrylic and methacrylate polymers). In the late 1980s, our research on the functionalization of polyolefins was inspired by the development of homogeneous, single-site metallocene catalysts that showed excellent copolymerization capabilities and a well-controlled polymerization mechanism. We were curious to know how to apply this newly available technology to the direct polymerization (in-reactor) process to circumvent the inevitable deactivation of the transition metal cationic active site by functional (polar) groups containing basic O, N, and halides. Throughout the past two decades, we have developed an effective approach that is centered on specially designed "reactive" comonomers and chain transfer agents. These can deliver three essential properties during the polymerization process: (1) stability (no side reaction) of the active site; (2) solubility in the polymerization media for effective incorporation; and (3) versatility for interconversion to desirable functional groups under mild reaction conditions after polymerization (preferably a one-pot process). With the conjunction of suitable metallocene catalysts, a broad range of polyolefins with "reactive" sites in the side chains or chain end were prepared, and the incorporated reactive groups were interconverted into functional groups to form side-chain-or chain-end-functionalized polyolefins. Some active sites were also transformed into "living" radical or anionic initiator to initiate graft-from polymerization of polar monomers to obtain polyolefin graft and block copolymers (such as PP-g-PMMA and PP-b-PMMA). The resulting functional polyolefins show many desirable properties and applications. This chapter focuses on applications in the area of energy storage. Specifically, I will discuss the usage of new functional polypropylene polymers in the formation of dielectric thin films in capacitors that show significantly higher energy and power densities.
UR - http://www.scopus.com/inward/record.url?scp=84891071286&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84891071286&partnerID=8YFLogxK
U2 - 10.1007/12_2013_209
DO - 10.1007/12_2013_209
M3 - Chapter
AN - SCOPUS:84891071286
SN - 9783642408045
T3 - Advances in Polymer Science
SP - 233
EP - 278
BT - Polyolefins
PB - Springer New York LLC
ER -