TY - GEN
T1 - Functionally graded cellular contact-aided compliant mechanism for energy absorption
AU - Jovanova, Jovana
AU - Nastevska, Angela
AU - Frecker, Mary
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Cellular contact-aided compliant mechanisms (C3M) are cellular structures with integrated self-contact mechanisms, i.e. the segments can come into contact with each other during deformation. The contact changes the load path and can influence on the mechanism’s performance. Cellular contact-aided compliant mechanisms can be tailored for a specific structural application, such as energy absorption. Nickel Titanium compliant mechanisms can exploit the superelastic effect to improve performance and increase energy absorption. The potential for compliant mechanisms designed specifically for metal additive manufacturing opens the possibility of functional grading and tailoring the material properties locally for achieving overall performance. The combined effort of the geometry and the nonlinear material property increases the local compliance of the unit cell, resulting in higher energy absorption. A functionally graded 3D energy absorbing contact-aided compliant mechanisms cell with curved walls is analyzed. Functionally graded zones of higher flexibility are explored with different superelastic material properties. Introducing different moduli of elasticity as a function of the critical transformation stress results in different energy absorption. This approach can be used for tailoring the overall performance based on the application.
AB - Cellular contact-aided compliant mechanisms (C3M) are cellular structures with integrated self-contact mechanisms, i.e. the segments can come into contact with each other during deformation. The contact changes the load path and can influence on the mechanism’s performance. Cellular contact-aided compliant mechanisms can be tailored for a specific structural application, such as energy absorption. Nickel Titanium compliant mechanisms can exploit the superelastic effect to improve performance and increase energy absorption. The potential for compliant mechanisms designed specifically for metal additive manufacturing opens the possibility of functional grading and tailoring the material properties locally for achieving overall performance. The combined effort of the geometry and the nonlinear material property increases the local compliance of the unit cell, resulting in higher energy absorption. A functionally graded 3D energy absorbing contact-aided compliant mechanisms cell with curved walls is analyzed. Functionally graded zones of higher flexibility are explored with different superelastic material properties. Introducing different moduli of elasticity as a function of the critical transformation stress results in different energy absorption. This approach can be used for tailoring the overall performance based on the application.
UR - http://www.scopus.com/inward/record.url?scp=85057279872&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057279872&partnerID=8YFLogxK
U2 - 10.1115/SMASIS2018-8175
DO - 10.1115/SMASIS2018-8175
M3 - Conference contribution
AN - SCOPUS:85057279872
T3 - ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018
BT - Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018
Y2 - 10 September 2018 through 12 September 2018
ER -