Functionally graded cellular contact-aided compliant mechanism for energy absorption

Jovana Jovanova, Angela Nastevska, Mary Frecker

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Cellular contact-aided compliant mechanisms (C3M) are cellular structures with integrated self-contact mechanisms, i.e. the segments can come into contact with each other during deformation. The contact changes the load path and can influence on the mechanism’s performance. Cellular contact-aided compliant mechanisms can be tailored for a specific structural application, such as energy absorption. Nickel Titanium compliant mechanisms can exploit the superelastic effect to improve performance and increase energy absorption. The potential for compliant mechanisms designed specifically for metal additive manufacturing opens the possibility of functional grading and tailoring the material properties locally for achieving overall performance. The combined effort of the geometry and the nonlinear material property increases the local compliance of the unit cell, resulting in higher energy absorption. A functionally graded 3D energy absorbing contact-aided compliant mechanisms cell with curved walls is analyzed. Functionally graded zones of higher flexibility are explored with different superelastic material properties. Introducing different moduli of elasticity as a function of the critical transformation stress results in different energy absorption. This approach can be used for tailoring the overall performance based on the application.

Original languageEnglish (US)
Title of host publicationMechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851951
DOIs
StatePublished - Jan 1 2018
EventASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018 - San Antonio, United States
Duration: Sep 10 2018Sep 12 2018

Publication series

NameASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018
Volume2

Other

OtherASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018
Country/TerritoryUnited States
CitySan Antonio
Period9/10/189/12/18

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Civil and Structural Engineering

Fingerprint

Dive into the research topics of 'Functionally graded cellular contact-aided compliant mechanism for energy absorption'. Together they form a unique fingerprint.

Cite this