Abstract
The detection of mesoscale oceanic structures, such as upwellings or eddies, from satellite images has significance for marine environmental studies, coastal resource management, and ocean dynamics studies. Nevertheless, there is a lack of tools that allow us to retrieve automatically relevant mesoscale structures from large satellite image databases. This paper focuses on the development and validation of a content-based image retrieval system to classify and retrieve oceanic structures from satellite images. The images were obtained from the National Oceanic and Atmospheric Administration satellite's Advanced Very High Resolution Radiometer sensor. The study area is about 2-21, N19-45. This system conducts labeling and retrieval of the most relevant and typical mesoscale oceanic structures, such as upwellings, eddies, and island wakes located in the Canary Islands area and in the Mediterranean and Cantabrian seas. Our work is based on several soft computing technologies such as fuzzy logic and neurofuzzy systems.
Original language | English (US) |
---|---|
Article number | 6679222 |
Pages (from-to) | 5422-5431 |
Number of pages | 10 |
Journal | IEEE Transactions on Geoscience and Remote Sensing |
Volume | 52 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2014 |
All Science Journal Classification (ASJC) codes
- Electrical and Electronic Engineering
- General Earth and Planetary Sciences