Fuzzy-Cuts: A knowledge-driven graph-based method for medical image segmentation

D. R. Chittajallu, G. Brunner, U. Kurkure, R. P. Yalamanchili, I. A. Kakadiaris

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

Image segmentation is, in general, an ill-posed problem and additional constraints need to be imposed in order to achieve the desired result. Particularly in the field of medical image segmentation, a significant amount of prior knowledge is available that can be used to constrain the solution space of the segmentation problem. However, most of this prior knowledge is, in general, vague or imprecise in nature, which makes it very difficult to model. This is the problem that is addressed in this paper. Specifically, in this paper, we present Fuzzy-Cuts, a novel, knowledge-driven, graph-based method for medical image segmentation. We cast the problem of image segmentation as the Maximum A Posteriori (MAP) estimation of a Markov Random Field (MRF) which, in essence, is equivalent to the minimization of the corresponding Gibbs energy function. Considering the inherent imprecision that is common in the a priori description of objects in medical images, we propose a fuzzy theoretic model to incorporate knowledge-driven constraints into the MAP-MRF formulation. In particular, we focus on prior information about the object's location, appearance and spatial connectivity to a known seed region inside the object. To that end, we introduce fuzzy connectivity and fuzzy location priors that are used in combination to define the first-order clique potential of the Gibbs energy function. In our experiments, we demonstrate the application of the proposed method to the challenging problem of heart segmentation in non-contrast computed tomography(CT) data.

Original languageEnglish (US)
Title of host publication2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009
PublisherIEEE Computer Society
Pages715-722
Number of pages8
ISBN (Print)9781424439935
DOIs
StatePublished - 2009
Event2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009 - Miami, FL, United States
Duration: Jun 20 2009Jun 25 2009

Publication series

Name2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009

Conference

Conference2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009
Country/TerritoryUnited States
CityMiami, FL
Period6/20/096/25/09

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Fuzzy-Cuts: A knowledge-driven graph-based method for medical image segmentation'. Together they form a unique fingerprint.

Cite this