TY - JOUR
T1 - Gγ1 + Gγ2 ≠ Gβ
T2 - Heterotrimeric G protein gγ-deficient mutants do not recapitulate all phenotypes of Gβ-deficient mutants
AU - Trusov, Yuri
AU - Zhang, Wei
AU - Assmann, Sarah M.
AU - Botella, José Ramón
PY - 2008/6
Y1 - 2008/6
N2 - Heterotrimeric G proteins are signaling molecules ubiquitous among all eukaryotes. The Arabidopsis (Arabidopsis thaliana) genome contains one Gα (GPA1), one Gβ (AGB1), and two Gγ subunit (AGG1 and AGG2) genes. The Gβ requirement of a functional Gγ subunit for active signaling predicts that a mutant lacking both AGG1 and AGG2 proteins should phenotypically resemble mutants lacking AGB1 in all respects. We previously reported that Gβ- and Gγ-deficient mutants coincide during plant pathogen interaction, lateral root development, gravitropic response, and some aspects of seed germination. Here, we report a number of phenotypic discrepancies between Gβ- and Gγ-deficient mutants, including the double mutant lacking both Gγ subunits. While Gβ-deficient mutants are hypersensitive to abscisic acid inhibition of seed germination and are hyposensitive to abscisic acid inhibition of stomatal opening and guard cell inward K1 currents, none of the available Gγ-deficient mutants shows any deviation from the wild type in these responses, nor do they show the hypocotyl elongation and hook development defects that are characteristic of Gβ-deficient mutants. In addition, striking discrepancies were observed in the aerial organs of Gβ- versus Gγ-deficient mutants. In fact, none of the distinctive traits observed in Gβ-deficient mutants (such as reduced size of cotyledons, leaves, flowers, and siliques) is present in any of the Gγ single and double mutants. Despite the considerable amount of phenotypic overlap between Gβ- and Gγ-deficient mutants, confirming the tight relationship between Gβ and Gγ subunits in plants, considering the significant differences reported here, we hypothesize the existence of new and as yet unknown elements in the heterotrimeric G protein signaling complex.
AB - Heterotrimeric G proteins are signaling molecules ubiquitous among all eukaryotes. The Arabidopsis (Arabidopsis thaliana) genome contains one Gα (GPA1), one Gβ (AGB1), and two Gγ subunit (AGG1 and AGG2) genes. The Gβ requirement of a functional Gγ subunit for active signaling predicts that a mutant lacking both AGG1 and AGG2 proteins should phenotypically resemble mutants lacking AGB1 in all respects. We previously reported that Gβ- and Gγ-deficient mutants coincide during plant pathogen interaction, lateral root development, gravitropic response, and some aspects of seed germination. Here, we report a number of phenotypic discrepancies between Gβ- and Gγ-deficient mutants, including the double mutant lacking both Gγ subunits. While Gβ-deficient mutants are hypersensitive to abscisic acid inhibition of seed germination and are hyposensitive to abscisic acid inhibition of stomatal opening and guard cell inward K1 currents, none of the available Gγ-deficient mutants shows any deviation from the wild type in these responses, nor do they show the hypocotyl elongation and hook development defects that are characteristic of Gβ-deficient mutants. In addition, striking discrepancies were observed in the aerial organs of Gβ- versus Gγ-deficient mutants. In fact, none of the distinctive traits observed in Gβ-deficient mutants (such as reduced size of cotyledons, leaves, flowers, and siliques) is present in any of the Gγ single and double mutants. Despite the considerable amount of phenotypic overlap between Gβ- and Gγ-deficient mutants, confirming the tight relationship between Gβ and Gγ subunits in plants, considering the significant differences reported here, we hypothesize the existence of new and as yet unknown elements in the heterotrimeric G protein signaling complex.
UR - http://www.scopus.com/inward/record.url?scp=48549097110&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=48549097110&partnerID=8YFLogxK
U2 - 10.1104/pp.108.117655
DO - 10.1104/pp.108.117655
M3 - Article
C2 - 18441222
AN - SCOPUS:48549097110
SN - 0032-0889
VL - 147
SP - 636
EP - 649
JO - Plant physiology
JF - Plant physiology
IS - 2
ER -