Game-theoretic learning in a distributed-information setting: Distributed convergence to mean-centric equilibria

Brian Swenson, Soummya Kar, João Xavier

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The paper considers distributed learning in large-scale games via fictitious-play type algorithms. Given a preassigned communication graph structure for information exchange among the players, this paper studies a distributed implementation of the Empirical Centroid Fictitious Play (ECFP) algorithm that is well-suited to large-scale games in terms of complexity and memory requirements. It is shown that the distributed algorithm converges to an equilibrium set denoted as the mean-centric equilibria (MCE) for a reasonably large class of games.

Original languageEnglish (US)
Title of host publicationConference Record of the 48th Asilomar Conference on Signals, Systems and Computers
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Pages1616-1620
Number of pages5
ISBN (Electronic)9781479982974
DOIs
StatePublished - Apr 24 2015
Event48th Asilomar Conference on Signals, Systems and Computers, ACSSC 2015 - Pacific Grove, United States
Duration: Nov 2 2014Nov 5 2014

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
Volume2015-April
ISSN (Print)1058-6393

Other

Other48th Asilomar Conference on Signals, Systems and Computers, ACSSC 2015
Country/TerritoryUnited States
CityPacific Grove
Period11/2/1411/5/14

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Game-theoretic learning in a distributed-information setting: Distributed convergence to mean-centric equilibria'. Together they form a unique fingerprint.

Cite this