GaN electronics for high power, high temperature applications

S. J. Pearton, F. Ren, A. P. Zhang, G. Dang, X. A. Cao, H. Cho, C. R. Abemathy, J. Han, A. G. Baca, C. Monier, P. Chang, R. J. Shul, L. Zhang, J. M. Van Hove, P. P. Chow, J. J. Klaassen, C. J. Polley, A. M. Wowchack, D. J. King, S. N.G. ChuM. Hong, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. I. Chyi, C. M. Lee, T. E. Nee, C. C. Chuo, G. C. Chi, J. M. Redwing

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Extremely efficient light emission is achieved in heteroepitaxial layers of GaN based materials. A photonic device fabricated on GaN regions provides better optical output and reliability. The advantages of AlGaInN system are wide bandgaps, good transport properties, and availability of heterostructures. Packaged switches made from AlGaN can operate at temperatures exceeding 250° centigrade, thereby reducing system complexity. The base resistance of GaN heterojunction bipolar transistors (HBTs) is much lower due to high doping level.

Original languageEnglish (US)
Pages (from-to)34-39
Number of pages6
JournalElectrochemical Society Interface
Volume9
Issue number2
StatePublished - Jun 2000

All Science Journal Classification (ASJC) codes

  • Electrochemistry

Fingerprint

Dive into the research topics of 'GaN electronics for high power, high temperature applications'. Together they form a unique fingerprint.

Cite this