GAP-DEPENDENT BOUNDS FOR Q-LEARNING USING REFERENCE-ADVANTAGE DECOMPOSITION

Zhong Zheng, Haochen Zhang, Lingzhou Xue

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We study the gap-dependent bounds of two important algorithms for on-policy Qlearning for finite-horizon episodic tabular Markov Decision Processes (MDPs): UCB-Advantage (Zhang et al. 2020) and Q-EarlySettled-Advantage (Li et al. 2021). UCB-Advantage and Q-EarlySettled-Advantage improve upon the results based on Hoeffding-type bonuses and achieve the almost optimal T-type regret bound in the worst-case scenario, where T is the total number of steps. However, the benign structures of the MDPs such as a strictly positive suboptimality gap can significantly improve the regret. While gap-dependent regret bounds have been obtained for Q-learning with Hoeffding-type bonuses, it remains an open question to establish gap-dependent regret bounds for Q-learning using variance estimators in their bonuses and reference-advantage decomposition for variance reduction. We develop a novel error decomposition framework to prove gap-dependent regret bounds of UCB-Advantage and Q-EarlySettled-Advantage that are logarithmic in T and improve upon existing ones for Q-learning algorithms. Moreover, we establish the gap-dependent bound for the policy switching cost of UCB-Advantage and improve that under the worst-case MDPs. To our knowledge, this paper presents the first gap-dependent regret analysis for Q-learning using variance estimators and reference-advantage decomposition and also provides the first gap-dependent analysis on policy switching cost for Q-learning.

Original languageEnglish (US)
Title of host publication13th International Conference on Learning Representations, ICLR 2025
PublisherInternational Conference on Learning Representations, ICLR
Pages11849-11901
Number of pages53
ISBN (Electronic)9798331320850
StatePublished - 2025
Event13th International Conference on Learning Representations, ICLR 2025 - Singapore, Singapore
Duration: Apr 24 2025Apr 28 2025

Publication series

Name13th International Conference on Learning Representations, ICLR 2025

Conference

Conference13th International Conference on Learning Representations, ICLR 2025
Country/TerritorySingapore
CitySingapore
Period4/24/254/28/25

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'GAP-DEPENDENT BOUNDS FOR Q-LEARNING USING REFERENCE-ADVANTAGE DECOMPOSITION'. Together they form a unique fingerprint.

Cite this