TY - JOUR
T1 - Ga2O3-on-SiC Composite Wafer for Thermal Management of Ultrawide Bandgap Electronics
AU - Song, Yiwen
AU - Shoemaker, Daniel
AU - Leach, Jacob H.
AU - McGray, Craig
AU - Huang, Hsien Lien
AU - Bhattacharyya, Arkka
AU - Zhang, Yingying
AU - Gonzalez-Valle, C. Ulises
AU - Hess, Tina
AU - Zhukovsky, Sarit
AU - Ferri, Kevin
AU - Lavelle, Robert M.
AU - Perez, Carlos
AU - Snyder, David W.
AU - Maria, Jon Paul
AU - Ramos-Alvarado, Bladimir
AU - Wang, Xiaojia
AU - Krishnamoorthy, Sriram
AU - Hwang, Jinwoo
AU - Foley, Brian M.
AU - Choi, Sukwon
N1 - Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - β-phase gallium oxide (Ga2O3) is an emerging ultrawide bandgap (UWBG) semiconductor (EG ∼4.8 eV), which promises generational improvements in the performance and manufacturing cost over today's commercial wide bandgap power electronics based on GaN and SiC. However, overheating has been identified as a major bottleneck to the performance and commercialization of Ga2O3 device technologies. In this work, a novel Ga2O3/4H-SiC composite wafer with high heat transfer performance and an epi-ready surface finish has been developed using a fusion-bonding method. By taking advantage of low-temperature metalorganic vapor phase epitaxy, a Ga2O3 epitaxial layer was successfully grown on the composite wafer while maintaining the structural integrity of the composite wafer without causing interface damage. An atomically smooth homoepitaxial film with a room-temperature Hall mobility of ∼94 cm2/Vs and a volume charge of ∼3 × 1017 cm-3 was achieved at a growth temperature of 600 °C. Phonon transport across the Ga2O3/4H-SiC interface has been studied using frequency-domain thermoreflectance and a differential steady-state thermoreflectance approach. Scanning transmission electron microscopy analysis suggests that phonon transport across the Ga2O3/4H-SiC interface is dominated by the thickness of the SiNx bonding layer and an unintentionally formed SiOx interlayer. Extrinsic effects that impact the thermal conductivity of the 6.5 μm thick Ga2O3 layer were studied via time-domain thermoreflectance. Thermal simulation was performed to estimate the improvement of the thermal performance of a hypothetical single-finger Ga2O3 metal-semiconductor field-effect transistor fabricated on the composite substrate. This novel power transistor topology resulted in a ∼4.3× reduction in the junction-to-package device thermal resistance. Furthermore, an even more pronounced cooling effect is demonstrated when the composite wafer is implemented into the device design of practical multifinger devices. These innovations in device-level thermal management give promise to the full exploitation of the promising benefits of the UWBG material, which will lead to significant improvements in the power density and efficiency of power electronics over current state-of-the-art commercial devices.
AB - β-phase gallium oxide (Ga2O3) is an emerging ultrawide bandgap (UWBG) semiconductor (EG ∼4.8 eV), which promises generational improvements in the performance and manufacturing cost over today's commercial wide bandgap power electronics based on GaN and SiC. However, overheating has been identified as a major bottleneck to the performance and commercialization of Ga2O3 device technologies. In this work, a novel Ga2O3/4H-SiC composite wafer with high heat transfer performance and an epi-ready surface finish has been developed using a fusion-bonding method. By taking advantage of low-temperature metalorganic vapor phase epitaxy, a Ga2O3 epitaxial layer was successfully grown on the composite wafer while maintaining the structural integrity of the composite wafer without causing interface damage. An atomically smooth homoepitaxial film with a room-temperature Hall mobility of ∼94 cm2/Vs and a volume charge of ∼3 × 1017 cm-3 was achieved at a growth temperature of 600 °C. Phonon transport across the Ga2O3/4H-SiC interface has been studied using frequency-domain thermoreflectance and a differential steady-state thermoreflectance approach. Scanning transmission electron microscopy analysis suggests that phonon transport across the Ga2O3/4H-SiC interface is dominated by the thickness of the SiNx bonding layer and an unintentionally formed SiOx interlayer. Extrinsic effects that impact the thermal conductivity of the 6.5 μm thick Ga2O3 layer were studied via time-domain thermoreflectance. Thermal simulation was performed to estimate the improvement of the thermal performance of a hypothetical single-finger Ga2O3 metal-semiconductor field-effect transistor fabricated on the composite substrate. This novel power transistor topology resulted in a ∼4.3× reduction in the junction-to-package device thermal resistance. Furthermore, an even more pronounced cooling effect is demonstrated when the composite wafer is implemented into the device design of practical multifinger devices. These innovations in device-level thermal management give promise to the full exploitation of the promising benefits of the UWBG material, which will lead to significant improvements in the power density and efficiency of power electronics over current state-of-the-art commercial devices.
UR - http://www.scopus.com/inward/record.url?scp=85114084129&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85114084129&partnerID=8YFLogxK
U2 - 10.1021/acsami.1c09736
DO - 10.1021/acsami.1c09736
M3 - Article
C2 - 34470105
AN - SCOPUS:85114084129
SN - 1944-8244
VL - 13
SP - 40817
EP - 40829
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 34
ER -