TY - JOUR
T1 - Gate-tunable and thickness-dependent electronic and thermoelectric transport in few-layer MoS2
AU - Kayyalha, Morteza
AU - Maassen, Jesse
AU - Lundstrom, Mark
AU - Shi, Li
AU - Chen, Yong P.
N1 - Publisher Copyright:
© 2016 Author(s).
PY - 2016/10/7
Y1 - 2016/10/7
N2 - Over the past few years, there has been a growing interest in layered transition metal dichalcogenides such as molybdenum disulfide (MoS2). Most studies so far have focused on the electronic and optoelectronic properties of single-layer MoS2, whose band structure features a direct bandgap, in sharp contrast to the indirect bandgap of thicker MoS2. In this paper, we present a systematic study of the thickness-dependent electrical and thermoelectric properties of few-layer MoS2. We observe that the electrical conductivity (σ) increases as we reduce the thickness of MoS2 and peaks at about two layers, with six-times larger conductivity than our thickest sample (23-layer MoS2). Using a back-gate voltage, we modulate the Fermi energy (E F) of the sample where an increase in the Seebeck coefficient (S) is observed with decreasing gate voltage (E F) towards the subthreshold (OFF state) of the device, reaching as large as 500 μ V / K in a four-layer MoS2. While previous reports have focused on a single-layer MoS2 and measured Seebeck coefficient in the OFF state, which has vanishing electrical conductivity and thermoelectric power factor (P F = S 2 σ), we show that MoS2-based devices in their ON state can have P F as large as > 50 μ W cm K 2 in the two-layer sample. The P F increases with decreasing thickness and then drops abruptly from double-layer to single-layer MoS2, a feature we suggest as due to a change in the energy dependence of the electron mean-free-path according to our theoretical calculation. Moreover, we show that care must be taken in thermoelectric measurements in the OFF state to avoid obtaining erroneously large Seebeck coefficients when the channel resistance is very high. Our study paves the way towards a more comprehensive examination of the thermoelectric performance of two-dimensional (2D) semiconductors.
AB - Over the past few years, there has been a growing interest in layered transition metal dichalcogenides such as molybdenum disulfide (MoS2). Most studies so far have focused on the electronic and optoelectronic properties of single-layer MoS2, whose band structure features a direct bandgap, in sharp contrast to the indirect bandgap of thicker MoS2. In this paper, we present a systematic study of the thickness-dependent electrical and thermoelectric properties of few-layer MoS2. We observe that the electrical conductivity (σ) increases as we reduce the thickness of MoS2 and peaks at about two layers, with six-times larger conductivity than our thickest sample (23-layer MoS2). Using a back-gate voltage, we modulate the Fermi energy (E F) of the sample where an increase in the Seebeck coefficient (S) is observed with decreasing gate voltage (E F) towards the subthreshold (OFF state) of the device, reaching as large as 500 μ V / K in a four-layer MoS2. While previous reports have focused on a single-layer MoS2 and measured Seebeck coefficient in the OFF state, which has vanishing electrical conductivity and thermoelectric power factor (P F = S 2 σ), we show that MoS2-based devices in their ON state can have P F as large as > 50 μ W cm K 2 in the two-layer sample. The P F increases with decreasing thickness and then drops abruptly from double-layer to single-layer MoS2, a feature we suggest as due to a change in the energy dependence of the electron mean-free-path according to our theoretical calculation. Moreover, we show that care must be taken in thermoelectric measurements in the OFF state to avoid obtaining erroneously large Seebeck coefficients when the channel resistance is very high. Our study paves the way towards a more comprehensive examination of the thermoelectric performance of two-dimensional (2D) semiconductors.
UR - http://www.scopus.com/inward/record.url?scp=84989910514&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84989910514&partnerID=8YFLogxK
U2 - 10.1063/1.4963364
DO - 10.1063/1.4963364
M3 - Article
AN - SCOPUS:84989910514
SN - 0021-8979
VL - 120
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 13
M1 - 134305
ER -