TY - JOUR
T1 - Gene expression analysis of hepatic roles in cause and development of diabetes in Goto-Kakizaki rats
AU - Almon, Richard R.
AU - DuBois, Debra C.
AU - Lai, William
AU - Xue, Bai
AU - Nie, Jing
AU - Jusko, William J.
PY - 2009
Y1 - 2009
N2 - Progression of diabetes was studied in male Goto-Kakizaki (GK) spontaneously diabetic rats between 4 and 20 weeks of age, and compared with Wistar-Kyoto (WKY) controls. Five animals from each strain were killed at 4, 8, 12, 16, and 20 weeks of age. Body weight, plasma glucose, and plasma insulin were measured. WKY rats showed a significantly larger weight gain than GK animals from 8 weeks of age onward. Plasma glucose was relatively stable in WKY. By contrast, plasma glucose was higher in GK than WKY even at 4 weeks and continued to increase up to 12 weeks and then maintained a hyperglycemic plateau throughout the remainder of the experiment. Plasma insulin was relatively stable in WKY from 8 weeks onward but was sharply elevated in GK between 4 and 8 weeks. After 8 weeks, insulin declined in GK with GK concentrations lower than WKYat 20 weeks, suggesting β-cell failure. Gene expression in liver was explored using Affymetrix 230-2 gene arrays. Data mining identified 395 probe sets out of more than 31 000 that were differentially regulated. Excluding unidentifiable probe sets and considering duplicate probe sets, there were 311 genes that were expressed differently in the liver of the two strains. A functional analysis of these genes indicated that disruption of lipid metabolism in the liver is a major consequence of the chronic hyperglycemia in the GK strain. In addition, the results suggest that chronic inflammation contributes significantly to the development of diabetes in the GK rats.
AB - Progression of diabetes was studied in male Goto-Kakizaki (GK) spontaneously diabetic rats between 4 and 20 weeks of age, and compared with Wistar-Kyoto (WKY) controls. Five animals from each strain were killed at 4, 8, 12, 16, and 20 weeks of age. Body weight, plasma glucose, and plasma insulin were measured. WKY rats showed a significantly larger weight gain than GK animals from 8 weeks of age onward. Plasma glucose was relatively stable in WKY. By contrast, plasma glucose was higher in GK than WKY even at 4 weeks and continued to increase up to 12 weeks and then maintained a hyperglycemic plateau throughout the remainder of the experiment. Plasma insulin was relatively stable in WKY from 8 weeks onward but was sharply elevated in GK between 4 and 8 weeks. After 8 weeks, insulin declined in GK with GK concentrations lower than WKYat 20 weeks, suggesting β-cell failure. Gene expression in liver was explored using Affymetrix 230-2 gene arrays. Data mining identified 395 probe sets out of more than 31 000 that were differentially regulated. Excluding unidentifiable probe sets and considering duplicate probe sets, there were 311 genes that were expressed differently in the liver of the two strains. A functional analysis of these genes indicated that disruption of lipid metabolism in the liver is a major consequence of the chronic hyperglycemia in the GK strain. In addition, the results suggest that chronic inflammation contributes significantly to the development of diabetes in the GK rats.
UR - http://www.scopus.com/inward/record.url?scp=67449114009&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67449114009&partnerID=8YFLogxK
U2 - 10.1677/JOE-08-0404
DO - 10.1677/JOE-08-0404
M3 - Article
C2 - 19074471
AN - SCOPUS:67449114009
SN - 0022-0795
VL - 200
SP - 331
EP - 346
JO - Journal of Endocrinology
JF - Journal of Endocrinology
IS - 3
ER -