Abstract
Far-from-equilibrium systems can form memories of previous deformations or driving. In systems from sheared glassy materials to buckling beams to crumpled sheets, this behavior is dominated by return-point memory, in which revisiting a past extremum of driving restores the system to a previous state. Cyclic driving with both positive and negative strains forms multiple nested memories, as in a single-dial combination lock, while asymmetric driving (only positive strain) cannot. We study this case in a general model of hysteresis that considers discrete elements called hysterons. We show how two hysterons with a frustrated interaction can violate return-point memory, realizing multiple memories of asymmetric driving. This reveals a general principle for designing systems that store sequences of cyclic driving, whether symmetric or asymmetric. In disordered systems, asymmetric driving is a sensitive tool for the direct measurement of frustration.
Original language | English (US) |
---|---|
Article number | eadr5933 |
Journal | Science Advances |
Volume | 11 |
Issue number | 5 |
DOIs | |
State | Published - Jan 31 2025 |
All Science Journal Classification (ASJC) codes
- General