Abstract
Attribute value taxonomies (AVTs) have been used to perform AVT-guided decision tree learning on partially or totally missing data. In many cases, user-supplied AVTs are used. We propose an approach to automatically generate an AVT for a given dataset using a genetic algorithm. Experiments on real world datasets demonstrate the feasibility of our approach, generating AVTs which yield comparable performance (in terms of classification accuracy) to that with user supplied AVTs.
Original language | English (US) |
---|---|
Pages (from-to) | 347-354 |
Number of pages | 8 |
Journal | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
Volume | 3245 |
State | Published - Dec 1 2004 |
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- Computer Science(all)