TY - JOUR
T1 - Generation and analysis of transcriptomic resources for a model system on the rise
T2 - The sea anemone Aiptasia pallida and its dinoflagellate endosymbiont
AU - Sunagawa, Shinichi
AU - Wilson, Emily C.
AU - Thaler, Michael
AU - Smith, Marc L.
AU - Caruso, Carlo
AU - Pringle, John R.
AU - Weis, Virginia M.
AU - Medina, Mónica
AU - Schwarz, Jodi A.
N1 - Funding Information:
We would like to thank Wayne Huang and Greg Priest-Dorman for system administration, Henry J. Forman for his input on oxidative-stress-related subjects, Elisha Wood-Charlson and two anonymous reviewers for providing constructive comments on the manuscript, and Josh Meisel for his assistance in preparation of the RNA used for library construction. Partial sequencing was donated by Eddy Rubin, director of the DOE Joint Genome Institute, through the sequencing quota allocated to the UC Merced Genome Biology course (BIS 142) in Spring 2007 and Spring 2008. Bioinfor-matics analyses were initiated by undergraduate students in the context of BIS 142 and courses BIOL325 and BIOL/CMPU353 taught at Vassar College. CC and JRP were partially supported by an Environmental Venture Project from the Woods Institute at Stanford University. VMW was partially supported by NSF grant IOB0542452. MM was partially supported by NSF awards (BE-GEN 0313708 and IOS 0644438) and startup funds from UC Merced. JS was supported by startup funds from Vassar College.
PY - 2009/6/5
Y1 - 2009/6/5
N2 - Background: The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between cnidarian hosts and unicellular dinoflagellate algae. The molecular mechanisms underlying the establishment, maintenance, and breakdown of the symbiotic partnership are, however, not well understood. Efforts to dissect these questions have been slow, as corals are notoriously difficult to work with. In order to expedite this field of research, we generated and analyzed a collection of expressed sequence tags (ESTs) from the sea anemone Aiptasia pallida and its dinoflagellate symbiont (Symbiodinium sp.), a system that is gaining popularity as a model to study cellular, molecular, and genomic questions related to cnidarian-dinoflagellate symbioses. Results: A set of 4,925 unique sequences (UniSeqs) comprising 1,427 clusters of 2 or more ESTs (contigs) and 3,498 unclustered ESTs (singletons) was generated by analyzing 10,285 high-quality ESTs from a mixed host/symbiont cDNA library. Using a BLAST-based approach to predict which unique sequences derived from the host versus symbiont genomes, we found that the contribution of the symbiont genome to the transcriptome was surprisingly small (1.6-6.4%). This may reflect low levels of gene expression in the symbionts, low coverage of alveolate genes in the sequence databases, a small number of symbiont cells relative to the total cellular content of the anemones, or failure to adequately lyse symbiont cells. Furthermore, we were able to identify groups of genes that are known or likely to play a role in cnidarian-dinoflagellate symbioses, including oxidative stress pathways that emerged as a prominent biological feature of this transcriptome. All ESTs and UniSeqs along with annotation results and other tools have been made accessible through the implementation of a publicly accessible database named AiptasiaBase. Conclusion: We have established the first large-scale transcriptomic resource for Aiptasia pallida and its dinoflagellate symbiont. These data provide researchers with tools to study questions related to cnidarian-dinoflagellate symbioses on a molecular, cellular, and genomic level. This groundwork represents a crucial step towards the establishment of a tractable model system that can be utilized to better understand cnidarian-dinoflagellate symbioses. With the advent of next-generation sequencing methods, the transcriptomic inventory of A. pallida and its symbiont, and thus the extent of AiptasiaBase, should expand dramatically in the near future.
AB - Background: The most diverse marine ecosystems, coral reefs, depend upon a functional symbiosis between cnidarian hosts and unicellular dinoflagellate algae. The molecular mechanisms underlying the establishment, maintenance, and breakdown of the symbiotic partnership are, however, not well understood. Efforts to dissect these questions have been slow, as corals are notoriously difficult to work with. In order to expedite this field of research, we generated and analyzed a collection of expressed sequence tags (ESTs) from the sea anemone Aiptasia pallida and its dinoflagellate symbiont (Symbiodinium sp.), a system that is gaining popularity as a model to study cellular, molecular, and genomic questions related to cnidarian-dinoflagellate symbioses. Results: A set of 4,925 unique sequences (UniSeqs) comprising 1,427 clusters of 2 or more ESTs (contigs) and 3,498 unclustered ESTs (singletons) was generated by analyzing 10,285 high-quality ESTs from a mixed host/symbiont cDNA library. Using a BLAST-based approach to predict which unique sequences derived from the host versus symbiont genomes, we found that the contribution of the symbiont genome to the transcriptome was surprisingly small (1.6-6.4%). This may reflect low levels of gene expression in the symbionts, low coverage of alveolate genes in the sequence databases, a small number of symbiont cells relative to the total cellular content of the anemones, or failure to adequately lyse symbiont cells. Furthermore, we were able to identify groups of genes that are known or likely to play a role in cnidarian-dinoflagellate symbioses, including oxidative stress pathways that emerged as a prominent biological feature of this transcriptome. All ESTs and UniSeqs along with annotation results and other tools have been made accessible through the implementation of a publicly accessible database named AiptasiaBase. Conclusion: We have established the first large-scale transcriptomic resource for Aiptasia pallida and its dinoflagellate symbiont. These data provide researchers with tools to study questions related to cnidarian-dinoflagellate symbioses on a molecular, cellular, and genomic level. This groundwork represents a crucial step towards the establishment of a tractable model system that can be utilized to better understand cnidarian-dinoflagellate symbioses. With the advent of next-generation sequencing methods, the transcriptomic inventory of A. pallida and its symbiont, and thus the extent of AiptasiaBase, should expand dramatically in the near future.
UR - http://www.scopus.com/inward/record.url?scp=67649576953&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67649576953&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-10-258
DO - 10.1186/1471-2164-10-258
M3 - Article
C2 - 19500365
AN - SCOPUS:67649576953
SN - 1471-2164
VL - 10
JO - BMC genomics
JF - BMC genomics
M1 - 258
ER -