Generation of pancreatic progenitors from human pluripotent stem cells by small molecules

Yuqian Jiang, Chuanxin Chen, Lauren N. Randolph, Songtao Ye, Xin Zhang, Xiaoping Bao, Xiaojun Lance Lian

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


Human pluripotent stem cell (hPSC)-derived pancreatic progenitors (PPs) provide promising cell therapies for type 1 diabetes. Current PP differentiation requires a high amount of Activin A during the definitive endoderm (DE) stage, making it economically difficult for commercial ventures. Here we identify a dose-dependent role for Wnt signaling in controlling DE differentiation without Activin A. While high-level Wnt activation induces mesodermal formation, low-level Wnt activation by a small-molecule inhibitor of glycogen synthase kinase 3 is sufficient for DE differentiation, yielding SOX17+FOXA2+ DE cells. BMP inhibition further enhances this DE differentiation, generating over 87% DE cells. These DE cells could be further differentiated into PPs and functional β cells. RNA-sequencing analysis of PP differentiation from hPSCs revealed expected transcriptome dynamics and new gene regulators during our small-molecule PP differentiation protocol. Overall, we established a robust growth-factor-free protocol for generating DE and PP cells, facilitating scalable production of pancreatic cells for regenerative applications.

Original languageEnglish (US)
Pages (from-to)2395-2409
Number of pages15
JournalStem Cell Reports
Issue number9
StatePublished - Sep 14 2021

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Genetics
  • Developmental Biology
  • Cell Biology


Dive into the research topics of 'Generation of pancreatic progenitors from human pluripotent stem cells by small molecules'. Together they form a unique fingerprint.

Cite this