Generation of suicide gene-modified chimeric antigen receptor-redirected T-cells for cancer immunotherapy

Kentaro Minagawa, Mustafa Al-Obaidi, Antonio Di Stasi

Research output: Chapter in Book/Report/Conference proceedingChapter

36 Scopus citations

Abstract

Chimeric antigen receptor (CAR)-redirected T-cells are a powerful tool for the treatment of several type of cancers; however, they can cause several adverse effects including cytokine release syndrome, off-target effects resulting in potentially fatal organ damage or even death. Particularly, for CAR T-cells redirected toward acute myeloid leukemia (AML) antigens myelosuppression can be a challenge. The previously validated inducible Caspase9 (iC9) suicide gene system is one of the approaches to control the infused cells in vivo through its activation with a nontherapeutic chemical inducer of dimerizer (CID). We performed a preclinical validation using a model of CD33+ AML, and generated iC9 CAR T-cells co-expressing a CAR targeting the AML-associated antigen CD33 and a selectable marker (ΔCD19). ΔCD19 selected (sel.) iC9-CAR.CD33 T-cells were effective in controlling leukemia growth in vitro, and could be partially eliminated (76%) using a chemical inducer of dimerization that activates iC9. Moreover, to completely eliminate residual cells, a second targeted agent was added. Future plans with these methods are to investigate the utility of iC9-CAR.CD33 T-cells as part of the conditioning therapy for an allogeneic hematopoietic stem cell transplant. Additional strategies that we are currently validating include (1) the modulation of the suicide gene activation, using different concentrations of the inducing agent(s), to be able to eliminate CAR T-cells modified by a regulatable gene, ideally aiming at preserving a proportion of the infused cells (and their antitumor activity) for mild to moderate toxicities, or (2) the co-expression of an inhibitory CAR aiming at sparing normal cells co-expressing an antigen not shared with the tumor.

Original languageEnglish (US)
Title of host publicationMethods in Molecular Biology
PublisherHumana Press Inc.
Pages57-73
Number of pages17
DOIs
StatePublished - Jan 1 2019

Publication series

NameMethods in Molecular Biology
Volume1895
ISSN (Print)1064-3745

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Genetics

Fingerprint

Dive into the research topics of 'Generation of suicide gene-modified chimeric antigen receptor-redirected T-cells for cancer immunotherapy'. Together they form a unique fingerprint.

Cite this