Genetic analysis of low-temperature tolerance during germination in tomato, Lycopersicon esculentum Mill.

M. R. Foolad, G. Y. Lin

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


The genetic basis of low-temperature tolerance during germination of tomato seed was investigated using two approaches. First, a cold-tolerant (PI 120256) and a cold-sensitive tomato cultivar (UCT5) and their reciprocal F2, F3 and BC1 progeny (total of 10 generations) were evaluated for germination at a low (11 ± 0.5°C) and a high (control) temperature (20 ± 0.5°C). Weighted least-square regression analysis indicated that in the low-temperature treatment most of the variation resulted from additive genetic effects, and dominance and epistatic interactions were nonsignificant. Partitioning of the total genetic variance into those attributable to the effects of embryo, endosperm, testa and the cytoplasm indicated that additive effects of endosperm and embryo could individually account for 80% and 77% of the total variance, respectively. In the control treatment, greater than 60% of the variation could be explained by individual additive effects of endosperm or embryo and ≃27% of the variation could be explained by embryo dominance effects. Across generations, there was a positive correlation (r = 0.78, P < 0.01) between germination in the control and low-temperature treatments and there were no significant genotype x temperature interactions. The results indicate the presence of similar or identical genes with predominantly additive effects on germination under both low and high temperatures. In the second approach, the effectiveness of directional phenotypic selection to improve tomato cold tolerance during germination was evaluated by selecting (in an F2 population of the same cross) the fastest germinating seeds under low temperature and comparing the germination of the selected F3 progeny with germination of an unselected F3 population. The results indicated that selection was highly effective and significantly improved germination performance of the progeny; a realized heritability of 0.74 was obtained for low-temperature tolerance during germination. It is concluded that in these tomato lines germination under low temperature is genetically controlled, with additivity being the major genetic component, and thus the trait can be improved by phenotypic selection.

Original languageEnglish (US)
Pages (from-to)171-176
Number of pages6
JournalPlant Breeding
Issue number2
StatePublished - May 1998

All Science Journal Classification (ASJC) codes

  • Agronomy and Crop Science
  • Genetics
  • Plant Science


Dive into the research topics of 'Genetic analysis of low-temperature tolerance during germination in tomato, Lycopersicon esculentum Mill.'. Together they form a unique fingerprint.

Cite this