TY - JOUR
T1 - Genetic characterization of a novel pheasant-origin orthoreovirus using Next-Generation Sequencing
AU - Tang, Yi
AU - Yu, Haiyang
AU - Jiang, Xiaoning
AU - Bao, Endong
AU - Wang, Dong
AU - Lu, Huaguang
N1 - Publisher Copyright:
Copyright: © 2022 Tang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/11
Y1 - 2022/11
N2 - A field isolate (Reo/SDWF/Pheasant/17608/20) of avian orthoreovirus (ARV), isolated from a flock of game-pheasants in Weifang, Shandong Province, was genetically characterized being a field variant or novel strain in our recent research studies in conducting whole genome sequencing by using Next-Generation Sequencing (NGS) technique on Illumina MiSeq platform. Among a total of 870,197 35-151-mer sequencing reads, 297,711 reads (34.21%) were identified as ARV sequences. The de novo assembly of the ARV reads resulted in generation of 10 ARV-related contigs with the average sequencing coverage from 1390× to 1977× according to 10 ARV genome segments. The complete genomes of this pheasant-origin ARV (Reo/SDWF/Pheasant/17608/20) were 23,495 bp in length and consist of 10 dsRNA segments ranged from 1192 bp (S4) to 3958 bp (L1) encoding 12 viral proteins. Sequence comparison between the SDWF17608 and classic ARV reference strains revealed that 58.1-100% nucleotide (nt) identities and 51.4-100% amino acid (aa) identities were in genome segment coding genes. The 10 RNA segments had conversed termini at 5' (5'-GCUUUU) and 3' (UCAUC-3') side, which were identical to the most published ARV strains. Phylogenetic analysis revealed that this pheasant ARV field variant was closely related with chicken ARV strains in 7 genome segment genes, but it possessed significant sequence divergence in M1, M3 and S2 segments. These findings suggested that this pheasant-origin field variant was a divergent ARV strain and was likely originated from reassortments between different chicken ARV strains.
AB - A field isolate (Reo/SDWF/Pheasant/17608/20) of avian orthoreovirus (ARV), isolated from a flock of game-pheasants in Weifang, Shandong Province, was genetically characterized being a field variant or novel strain in our recent research studies in conducting whole genome sequencing by using Next-Generation Sequencing (NGS) technique on Illumina MiSeq platform. Among a total of 870,197 35-151-mer sequencing reads, 297,711 reads (34.21%) were identified as ARV sequences. The de novo assembly of the ARV reads resulted in generation of 10 ARV-related contigs with the average sequencing coverage from 1390× to 1977× according to 10 ARV genome segments. The complete genomes of this pheasant-origin ARV (Reo/SDWF/Pheasant/17608/20) were 23,495 bp in length and consist of 10 dsRNA segments ranged from 1192 bp (S4) to 3958 bp (L1) encoding 12 viral proteins. Sequence comparison between the SDWF17608 and classic ARV reference strains revealed that 58.1-100% nucleotide (nt) identities and 51.4-100% amino acid (aa) identities were in genome segment coding genes. The 10 RNA segments had conversed termini at 5' (5'-GCUUUU) and 3' (UCAUC-3') side, which were identical to the most published ARV strains. Phylogenetic analysis revealed that this pheasant ARV field variant was closely related with chicken ARV strains in 7 genome segment genes, but it possessed significant sequence divergence in M1, M3 and S2 segments. These findings suggested that this pheasant-origin field variant was a divergent ARV strain and was likely originated from reassortments between different chicken ARV strains.
UR - http://www.scopus.com/inward/record.url?scp=85142378398&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85142378398&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0277411
DO - 10.1371/journal.pone.0277411
M3 - Article
C2 - 36409667
AN - SCOPUS:85142378398
SN - 1932-6203
VL - 17
JO - PloS one
JF - PloS one
IS - 11 November
M1 - e0277411
ER -