Genetic insights into the pathophysiology of amyotrophic lateral sclerosis (ALS) are untangling the clinical heterogeneity that may contribute to poor clinical trial outcomes and thus to a lack of effective treatments. Mutations in a large number of genes, including SOD1, C9ORF72, TARDBP, FUS, VAPB, VCP, UBQLN2, ALS2, SETX, OPTN, ANG, and SPG11, are thought to cause ALS, whereas others, including ATAXN2, GRN, HFE, NEFH, UNC13A, and VEGF, appear to be disease-modifying genes. Epigenetic influences may also play important roles. An improved understanding of ALS genetics should lead to better trial designs, insights into common molecular pathways, and better characterization of preclinical models. New genetic sequencing techniques, which use high-throughput methods to assess variants across the genome or exome, may facilitate rational patient stratification for clinical trials and permit more individualized prognostic information and treatment decisions in clinical care.

Original languageEnglish (US)
Pages (from-to)786-803
Number of pages18
JournalMuscle and Nerve
Issue number6
StatePublished - Jun 2014

All Science Journal Classification (ASJC) codes

  • Physiology
  • Clinical Neurology
  • Cellular and Molecular Neuroscience
  • Physiology (medical)


Dive into the research topics of 'Genetic heterogeneity of amyotrophic lateral sclerosis: Implications for clinical practice and research'. Together they form a unique fingerprint.

Cite this