Abstract
We determined postictal refractoriness in Sprague-Dawley rats by comparing lengths of two suprathreshold ECS seizures given 15 s to 24 h apart. A bimodal (immediate and delayed) decrease in seizure duration was found, suggesting ECS alters mechanisms of seizure termination. Since adenosine is implicated in seizure termination, we determined immediate (30 s) and delayed (24 h) postictal ECS refractoriness in Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats which vary in adenosine properties and initial ECS seizure length. At 30 s, the decrease in seizures did not differ between WKY (144%) and SHR (-36%) rats. At 24 h, SHR rats showed no change while the WKY rats showed a 20% decrease in seizure length (P < 0.01). These two strains also differed in the ability of the adenosine antagonist caffeine (50 mg/kg, i.p.) to prolong ECS seizures (no change for WKY, +13% for SHR, P < 0.001). The results suggest immediate and delayed postictal refractoriness are subject to genetic variation and may depend on central adenosine mechanisms.
Original language | English (US) |
---|---|
Pages (from-to) | 150-154 |
Number of pages | 5 |
Journal | Brain research |
Volume | 721 |
Issue number | 1-2 |
DOIs | |
State | Published - May 20 1996 |
All Science Journal Classification (ASJC) codes
- General Neuroscience
- Molecular Biology
- Clinical Neurology
- Developmental Biology