TY - JOUR
T1 - Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing
AU - Si, Jingna
AU - Zhou, Tao
AU - Bo, Wenhao
AU - Xu, Fang
AU - Wu, Rongling
N1 - Funding Information:
Funding Publication costs for this article came from Fundamental Research Funds for the Central Universities (TD2012-04), the Beijing Forestry University Young Scientist Fund (No. BLX2011007), the Research Fund for the Doctoral Program of Higher Education of China (20120014120011), Special Fund for Forest Scientific Research in the Public Welfare (201404102), NSF/IOS-0923975, Changjiang Scholars Award and "Thousand-person Plan" Award.
Funding Information:
Publication costs for this article came from Fundamental Research Funds for the Central Universities (TD2012-04), the Beijing Forestry University Young Scientist Fund (No. BLX2011007), the Research Fund for the Doctoral Program of Higher Education of China (20120014120011), Special Fund for Forest Scientific Research in the Public Welfare (201404102), NSF/IOS-0923975, Changjiang Scholars Award and “Thousand-person Plan” Award.
Publisher Copyright:
© 2014 Si et al.
PY - 2014
Y1 - 2014
N2 - Background: Populus euphratica is a representative model woody plant species for studying resistance to abiotic stresses such as drought and salt. Salt stress is one of the most common environmental factors that affect plant growth and development. MicroRNAs (miRNAs) are small, noncoding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Results: To investigate the miRNAs involved in the salt-stress response, we constructed four small cDNA libraries from P. euphratica plantlets treated with or without salt (300 mM NaCl, 3 days) in either the root or leaf. Using highthroughput sequencing to identify miRNAs, we found 164 conserved miRNAs belonging to 44 families. Of these, 136 novel miRNAs were from the leaf, and 128 novel miRNAs were from the root. In response to salt stress, 95 miRNAs belonging to 46 conserved miRNAs families changed significantly, with 56 miRNAs upregulated and 39 miRNAs downregulated in the leaf. A comparison of the leaf and root tissues revealed 155 miRNAs belonging to 63 families with significantly altered expression, including 84 upregulated and 71 downregulated miRNAs. Furthermore, 479 target genes in the root and 541 targets of novel miRNAs in the leaf were predicted, and functional information was annotated using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Conclusions: This study provides a novel visual field for understanding the regulatory roles of miRNAs in response to salt stress in Populus.
AB - Background: Populus euphratica is a representative model woody plant species for studying resistance to abiotic stresses such as drought and salt. Salt stress is one of the most common environmental factors that affect plant growth and development. MicroRNAs (miRNAs) are small, noncoding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Results: To investigate the miRNAs involved in the salt-stress response, we constructed four small cDNA libraries from P. euphratica plantlets treated with or without salt (300 mM NaCl, 3 days) in either the root or leaf. Using highthroughput sequencing to identify miRNAs, we found 164 conserved miRNAs belonging to 44 families. Of these, 136 novel miRNAs were from the leaf, and 128 novel miRNAs were from the root. In response to salt stress, 95 miRNAs belonging to 46 conserved miRNAs families changed significantly, with 56 miRNAs upregulated and 39 miRNAs downregulated in the leaf. A comparison of the leaf and root tissues revealed 155 miRNAs belonging to 63 families with significantly altered expression, including 84 upregulated and 71 downregulated miRNAs. Furthermore, 479 target genes in the root and 541 targets of novel miRNAs in the leaf were predicted, and functional information was annotated using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Conclusions: This study provides a novel visual field for understanding the regulatory roles of miRNAs in response to salt stress in Populus.
UR - http://www.scopus.com/inward/record.url?scp=84926284969&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84926284969&partnerID=8YFLogxK
U2 - 10.1186/1471-2156-15-S1-S6
DO - 10.1186/1471-2156-15-S1-S6
M3 - Article
C2 - 25079824
AN - SCOPUS:84926284969
SN - 1471-2156
VL - 15
JO - BMC Genetics
JF - BMC Genetics
M1 - S6
ER -