TY - JOUR
T1 - Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium " Chlorochromatium aggregatum"
AU - Liu, Zhenfeng
AU - Müller, Johannes
AU - Li, Tao
AU - Alvey, Richard M.
AU - Vogl, Kajetan
AU - Frigaard, Niels Ulrik
AU - Rockwell, Nathan C.
AU - Boyd, Eric S.
AU - Tomsho, Lynn P.
AU - Schuster, Stephan C.
AU - Henke, Petra
AU - Rohde, Manfred
AU - Overmann, Jörg
AU - Bryant, Donald A.
N1 - Funding Information:
The authors would like to thank staff of the Joint Genome Institute, and especially Lynne Goodwin, who obtained some early Sanger sequence data later used as scaffolding information for this project. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under contract number DE-AC02-05CH11231. The authors also thank Dr Daniel Drell for his support and interest in this project. DAB acknowledges support from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (grant DE-FG02-94ER20137) and from the National Science Foundation (MCB-0523100). ESB acknowledges support from the NASA Exobiology and Evolutionary Biology Program (grant NNX13AI11G).
PY - 2013/11/22
Y1 - 2013/11/22
N2 - Background: 'Chlorochromatium aggregatum' is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. 'Chlorochromatium aggregatum' is a motile, barrel-shaped aggregate formed from a single cell of 'Candidatus Symbiobacter mobilis" , a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium.Results: We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, 'Ca. S. mobilis' appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of 'Ca. S. mobilis' on Chl. chlorochromatii is described.Conclusions: Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, 'Ca. S. mobilis' can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships.
AB - Background: 'Chlorochromatium aggregatum' is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. 'Chlorochromatium aggregatum' is a motile, barrel-shaped aggregate formed from a single cell of 'Candidatus Symbiobacter mobilis" , a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium.Results: We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, 'Ca. S. mobilis' appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of 'Ca. S. mobilis' on Chl. chlorochromatii is described.Conclusions: Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, 'Ca. S. mobilis' can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships.
UR - http://www.scopus.com/inward/record.url?scp=84887978108&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84887978108&partnerID=8YFLogxK
U2 - 10.1186/gb-2013-14-11-r127
DO - 10.1186/gb-2013-14-11-r127
M3 - Article
C2 - 24267588
AN - SCOPUS:84887978108
SN - 1474-7596
VL - 14
JO - Genome biology
JF - Genome biology
IS - 11
M1 - R127
ER -