TY - JOUR
T1 - Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera
AU - Cornman, Scott R.
AU - Schatz, Michael C.
AU - Johnston, Spencer J.
AU - Chen, Yan Ping
AU - Pettis, Jeff
AU - Hunt, Greg
AU - Bourgeois, Lanie
AU - Elsik, Chris
AU - Anderson, Denis
AU - Grozinger, Christina M.
AU - Evans, Jay D.
N1 - Funding Information:
Financial support for this survey and an ongoing full genome sequencing project provided by USDA-ARS and the USDA National Institute of Food and Agriculture (grant 2009-05254 to JDE, GH, CE and LB). Additional support was provided by NIH grant R01-LM006845 and NSF grant NSF IIS-084494 to the University of Maryland (Steven Salzberg) and the University of Florida Department of Agriculture (JDE). We thank Antoinette Betschart and Kevin Hackett, USDA-ARS, for logistical support, Dawn Lopez for technical support, and the Institute for Genomic Sciences, University of Maryland, Baltimore, for sequencing. The helpful critique of three anonymous reviewers greatly improved the manuscript.
PY - 2010/10/25
Y1 - 2010/10/25
N2 - Background: The ectoparasitic mite Varroa destructor has emerged as the primary pest of domestic honey bees (Apis mellifera). Here we present an initial survey of the V. destructor genome carried out to advance our understanding of Varroa biology and to identify new avenues for mite control. This sequence survey provides immediate resources for molecular and population-genetic analyses of Varroa-Apis interactions and defines the challenges ahead for a comprehensive Varroa genome project.Results: The genome size was estimated by flow cytometry to be 565 Mbp, larger than most sequenced insects but modest relative to some other Acari. Genomic DNA pooled from ~1,000 mites was sequenced to 4.3× coverage with 454 pyrosequencing. The 2.4 Gbp of sequencing reads were assembled into 184,094 contigs with an N50 of 2,262 bp, totaling 294 Mbp of sequence after filtering. Genic sequences with homology to other eukaryotic genomes were identified on 13,031 of these contigs, totaling 31.3 Mbp. Alignment of protein sequence blocks conserved among V. destructor and four other arthropod genomes indicated a higher level of sequence divergence within this mite lineage relative to the tick Ixodes scapularis. A number of microbes potentially associated with V. destructor were identified in the sequence survey, including ~300 Kbp of sequence deriving from one or more bacterial species of the Actinomycetales. The presence of this bacterium was confirmed in individual mites by PCR assay, but varied significantly by age and sex of mites. Fragments of a novel virus related to the Baculoviridae were also identified in the survey. The rate of single nucleotide polymorphisms (SNPs) in the pooled mites was estimated to be 6.2 × 10-5per bp, a low rate consistent with the historical demography and life history of the species.Conclusions: This survey has provided general tools for the research community and novel directions for investigating the biology and control of Varroa mites. Ongoing development of Varroa genomic resources will be a boon for comparative genomics of under-represented arthropods, and will further enhance the honey bee and its associated pathogens as a model system for studying host-pathogen interactions.
AB - Background: The ectoparasitic mite Varroa destructor has emerged as the primary pest of domestic honey bees (Apis mellifera). Here we present an initial survey of the V. destructor genome carried out to advance our understanding of Varroa biology and to identify new avenues for mite control. This sequence survey provides immediate resources for molecular and population-genetic analyses of Varroa-Apis interactions and defines the challenges ahead for a comprehensive Varroa genome project.Results: The genome size was estimated by flow cytometry to be 565 Mbp, larger than most sequenced insects but modest relative to some other Acari. Genomic DNA pooled from ~1,000 mites was sequenced to 4.3× coverage with 454 pyrosequencing. The 2.4 Gbp of sequencing reads were assembled into 184,094 contigs with an N50 of 2,262 bp, totaling 294 Mbp of sequence after filtering. Genic sequences with homology to other eukaryotic genomes were identified on 13,031 of these contigs, totaling 31.3 Mbp. Alignment of protein sequence blocks conserved among V. destructor and four other arthropod genomes indicated a higher level of sequence divergence within this mite lineage relative to the tick Ixodes scapularis. A number of microbes potentially associated with V. destructor were identified in the sequence survey, including ~300 Kbp of sequence deriving from one or more bacterial species of the Actinomycetales. The presence of this bacterium was confirmed in individual mites by PCR assay, but varied significantly by age and sex of mites. Fragments of a novel virus related to the Baculoviridae were also identified in the survey. The rate of single nucleotide polymorphisms (SNPs) in the pooled mites was estimated to be 6.2 × 10-5per bp, a low rate consistent with the historical demography and life history of the species.Conclusions: This survey has provided general tools for the research community and novel directions for investigating the biology and control of Varroa mites. Ongoing development of Varroa genomic resources will be a boon for comparative genomics of under-represented arthropods, and will further enhance the honey bee and its associated pathogens as a model system for studying host-pathogen interactions.
UR - http://www.scopus.com/inward/record.url?scp=77958129830&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77958129830&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-11-602
DO - 10.1186/1471-2164-11-602
M3 - Article
C2 - 20973996
AN - SCOPUS:77958129830
SN - 1471-2164
VL - 11
JO - BMC genomics
JF - BMC genomics
IS - 1
M1 - 602
ER -