Geodynamics of continental rift initiation and evolution

Sascha Brune, Folarin Kolawole, Jean Arthur Olive, D. Sarah Stamps, W. Roger Buck, Susanne J.H. Buiter, Tanya Furman, Donna J. Shillington

Research output: Contribution to journalReview articlepeer-review

27 Scopus citations

Abstract

A continental rift is a nascent plate boundary where the lithosphere is thinned by tectonic activity. Some continental rifts undergo extension to the point that they generate a new ocean basin, whereas others can cease activity altogether. However, the mechanisms that determine rift success or failure remain debated. In this Review, we discuss fundamental rift processes, geodynamic forces and their tectonic interactions and identify the mechanisms that lead to the large variety of rifts on Earth. Rifting initiates through multiscale exploitation of inherited weaknesses, generating dynamic spatiotemporal competition, cessation or localization of rift structures. Progressive thinning of the lithosphere prompts continuous changes in the rift system force balance and prevents a steady-state configuration. Successful continent-scale rifts feature an abrupt and roughly tenfold increase in divergence velocity once the lithosphere is sufficiently weakened. Melt generation during mantle plume impingement can weaken the lithosphere by an order of magnitude, aiding the development of successful rifts. However, at failed rifts, the evolving force balance is dominated by lithospheric strengthening, so that tectonic activity ceases before continental rupture is complete. Outstanding future challenges include unravelling where magmatism is a cause or a consequence of rifting, isolating the tipping points that separate successful from failed rifting and deciphering the interaction of rift tectonics with fluid flow during georesource formation and volatile release.

Original languageEnglish (US)
Pages (from-to)235-253
Number of pages19
JournalNature Reviews Earth and Environment
Volume4
Issue number4
DOIs
StatePublished - Apr 2023

All Science Journal Classification (ASJC) codes

  • Pollution
  • Earth-Surface Processes
  • Atmospheric Science
  • Nature and Landscape Conservation

Cite this