GEOMETRIC AND FLOW CHARACTERIZATION OF ADDITIVELY MANUFACTURED TURBINE BLADES WITH DRILLED FILM COOLING HOLES

Kelsey E. McCormack, Maria Rozman, Reid A. Berdanier, Karen Ann Thole

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

As designers investigate new cooling technologies to advance future gas turbine engines, manufacturing methods that are fast and accurate are needed. Additive manufacturing facilitates the rapid prototyping of parts at a cost lower than conventional casting, but is challenged in accurately reproducing small features such as turbulators, pin fins and film cooling holes. This study explores the potential application of additive manufacturing and advanced hole drill methods as tools to investigate cooling technologies for future turbine blade designs. Data from computed tomography scans are used to non-destructively evaluate each of the cooling features in the blade. The resulting flow performance of these parts is further related to the manufacturing through benchtop flow testing. Results show that while total blade flow is consistent for all additively manufactured cooled blades, flow through smaller regions of the blades shows variations. Shaped film cooling holes manufactured using a high-speed electrical discharge machining method are within tolerance in the metering section but do not expand at the specified angle in the diffuser even though design tolerances are met. In contrast to high-speed EDM, conventional EDM holes are undersized throughout the length of the hole. Due to the additive manufacturing process, the surface roughness was higher on the additively manufactured parts in the current study than has been previously reported for surface roughness of commonly used cast components. The roughness results show high levels on thin walls, particularly at the trailing edge as well as on downskin surfaces. Internal surface roughness is higher than external roughness at most locations on the blade. The results of this study confirm that additive manufacturing along with advanced hole drilling techniques offer faster development of blade cooling designs.

Original languageEnglish (US)
Title of host publicationHeat Transfer
Subtitle of host publicationCombustors; Heat Transfer: Film Cooling
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791887998
DOIs
StatePublished - 2024
Event69th ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition, GT 2024 - London, United Kingdom
Duration: Jun 24 2024Jun 28 2024

Publication series

NameProceedings of the ASME Turbo Expo
Volume7

Conference

Conference69th ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition, GT 2024
Country/TerritoryUnited Kingdom
CityLondon
Period6/24/246/28/24

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'GEOMETRIC AND FLOW CHARACTERIZATION OF ADDITIVELY MANUFACTURED TURBINE BLADES WITH DRILLED FILM COOLING HOLES'. Together they form a unique fingerprint.

Cite this