Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator

Abhinav Kandala, Anthony Richardella, Susan Kempinger, Chao Xing Liu, Nitin Samarth

Research output: Contribution to journalArticlepeer-review

114 Scopus citations

Abstract

When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Crx(Bi,Sb)2-x Te3 thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer-Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization.

Original languageEnglish (US)
Article number7434
JournalNature communications
Volume6
DOIs
StatePublished - Jul 7 2015

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator'. Together they form a unique fingerprint.

Cite this