TY - JOUR
T1 - Ginsenoside Rb1 inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen β receptor
AU - Leung, K. W.
AU - Cheung, L. W.T.
AU - Pon, Y. L.
AU - Wong, R. N.S.
AU - Mak, N. K.
AU - Fan, T. P.P.
AU - Au, S. C.L.
AU - Tombran-Tink, J.
AU - Wong, A. S.T.
PY - 2007/9
Y1 - 2007/9
N2 - Background and purpose: Angiogenesis is a crucial step in tumour growth and metastasis. Ginsenoside-Rb1 (Rb1), the major active constituent of ginseng, potently inhibits angiogenesis in vivo and in vitro. However, the underlying mechanism remains unknown. We hypothesized that the potent anti-angiogenic protein, pigment epithelium-derived factor (PEDF), is involved in regulating the anti-angiogenic effects of Rb1. Experimental approaches: Rb1-induced PEDF was determined by real-time PCR and western blot analysis. The anti-angiogenic effects of Rb1 were demonstrated using endothelial cell tube formation assay. Competitive ligand-binding and reporter gene assays were employed to indicate the interaction between Rb1 and the oestrogen receptor (ER). Key results: Rb1 significantly increased the transcription, protein expression and secretion of PEDF. Targeted inhibition of PEDF completely prevented Rb1-induced inhibition of endothelial tube formation, suggesting that the anti-angiogenic effect of Rb1 was PEDF specific. Interestingly, the activation of PEDF occurred via a genomic pathway of ERβ. Competitive ligand-binding assays indicated that Rb1 is a specific agonist of ERβ, but not ERα. Rb1 effectively recruited transcriptional activators and activated an oestrogen-responsive reporter gene. Furthermore, Rb1-mediated PEDF activation and the subsequent inhibition of tube formation were blocked by the ER antagonist ICI 182,780 or transfection of ERβ siRNA, indicating ERβ dependence. Conclusions and implications: Here we show for the first time that the Rb1 suppressed the formation of endothelial tube-like structures through modulation of PEDF via ERβ. These findings demonstrate a novel mechanism of the action of this ginsenoside that may have value in anti-cancer and anti-angiogenesis therapy.
AB - Background and purpose: Angiogenesis is a crucial step in tumour growth and metastasis. Ginsenoside-Rb1 (Rb1), the major active constituent of ginseng, potently inhibits angiogenesis in vivo and in vitro. However, the underlying mechanism remains unknown. We hypothesized that the potent anti-angiogenic protein, pigment epithelium-derived factor (PEDF), is involved in regulating the anti-angiogenic effects of Rb1. Experimental approaches: Rb1-induced PEDF was determined by real-time PCR and western blot analysis. The anti-angiogenic effects of Rb1 were demonstrated using endothelial cell tube formation assay. Competitive ligand-binding and reporter gene assays were employed to indicate the interaction between Rb1 and the oestrogen receptor (ER). Key results: Rb1 significantly increased the transcription, protein expression and secretion of PEDF. Targeted inhibition of PEDF completely prevented Rb1-induced inhibition of endothelial tube formation, suggesting that the anti-angiogenic effect of Rb1 was PEDF specific. Interestingly, the activation of PEDF occurred via a genomic pathway of ERβ. Competitive ligand-binding assays indicated that Rb1 is a specific agonist of ERβ, but not ERα. Rb1 effectively recruited transcriptional activators and activated an oestrogen-responsive reporter gene. Furthermore, Rb1-mediated PEDF activation and the subsequent inhibition of tube formation were blocked by the ER antagonist ICI 182,780 or transfection of ERβ siRNA, indicating ERβ dependence. Conclusions and implications: Here we show for the first time that the Rb1 suppressed the formation of endothelial tube-like structures through modulation of PEDF via ERβ. These findings demonstrate a novel mechanism of the action of this ginsenoside that may have value in anti-cancer and anti-angiogenesis therapy.
UR - http://www.scopus.com/inward/record.url?scp=34948887630&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34948887630&partnerID=8YFLogxK
U2 - 10.1038/sj.bjp.0707359
DO - 10.1038/sj.bjp.0707359
M3 - Article
C2 - 17603552
SN - 0007-1188
VL - 152
SP - 207
EP - 215
JO - British Journal of Pharmacology
JF - British Journal of Pharmacology
IS - 2
ER -