TY - JOUR
T1 - Global role of IGF2BP1 in controlling the expression of Wnt/β-catenin-regulated genes in colorectal cancer cells
AU - Singh, Vikash
AU - Walter, Vonn
AU - Elcheva, Irina
AU - Imamura Kawasawa, Yuka
AU - Spiegelman, Vladimir S.
N1 - Publisher Copyright:
Copyright © 2023 Singh, Walter, Elcheva, Imamura Kawasawa and Spiegelman.
PY - 2023
Y1 - 2023
N2 - Introduction: Wnt/β-catenin signaling controls cell division and lineage specification during embryonic development, and is crucial for stem cells maintenance and gut tissue regeneration in adults. Aberrant activation of Wnt/β-catenin signaling is also essential for the pathogenesis of a variety of malignancies. The RNA-binding protein IGF2BP1 is a transcriptional target of Wnt/β-catenin signaling, normally expressed during development and often reactivated in cancer cells, where it regulates the stability of oncogenic mRNA. Methods: In this study, we employed iCLIP and RNA sequencing techniques to investigate the role of IGF2BP1 in the post-transcriptional regulation of Wnt/β-catenin-induced genes at a global level within colorectal cancer (CRC) cells characterized by constitutively active Wnt/β-catenin signaling. Results and Discussion: In our study, we show that, in contrast to normal cells, CRC cells exhibit a much stronger dependency on IGF2BP1 expression for Wnt/β-catenin-regulated genes. We show that both untransformed and CRC cells have their unique subsets of Wnt/β-catenin-regulated genes that IGF2BP1 directly controls through binding to their mRNA. Our iCLIP analysis revealed a significant change in the IGF2BP1-binding sites throughout the target transcriptomes and a significant change in the enrichment of 6-mer motifs associated with IGF2BP1 binding in response to Wnt/β-catenin signaling. Our study also revealed a signature of IGF2BP1-regulated genes that are significantly associated with colon cancer-free survival in humans, as well as potential targets for CRC treatment. Overall, this study highlights the complex and context-dependent regulation of Wnt/β-catenin signaling target genes by IGF2BP1 in non-transformed and CRC cells and identifies potential targets for colon cancer treatment.
AB - Introduction: Wnt/β-catenin signaling controls cell division and lineage specification during embryonic development, and is crucial for stem cells maintenance and gut tissue regeneration in adults. Aberrant activation of Wnt/β-catenin signaling is also essential for the pathogenesis of a variety of malignancies. The RNA-binding protein IGF2BP1 is a transcriptional target of Wnt/β-catenin signaling, normally expressed during development and often reactivated in cancer cells, where it regulates the stability of oncogenic mRNA. Methods: In this study, we employed iCLIP and RNA sequencing techniques to investigate the role of IGF2BP1 in the post-transcriptional regulation of Wnt/β-catenin-induced genes at a global level within colorectal cancer (CRC) cells characterized by constitutively active Wnt/β-catenin signaling. Results and Discussion: In our study, we show that, in contrast to normal cells, CRC cells exhibit a much stronger dependency on IGF2BP1 expression for Wnt/β-catenin-regulated genes. We show that both untransformed and CRC cells have their unique subsets of Wnt/β-catenin-regulated genes that IGF2BP1 directly controls through binding to their mRNA. Our iCLIP analysis revealed a significant change in the IGF2BP1-binding sites throughout the target transcriptomes and a significant change in the enrichment of 6-mer motifs associated with IGF2BP1 binding in response to Wnt/β-catenin signaling. Our study also revealed a signature of IGF2BP1-regulated genes that are significantly associated with colon cancer-free survival in humans, as well as potential targets for CRC treatment. Overall, this study highlights the complex and context-dependent regulation of Wnt/β-catenin signaling target genes by IGF2BP1 in non-transformed and CRC cells and identifies potential targets for colon cancer treatment.
UR - http://www.scopus.com/inward/record.url?scp=85173801239&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85173801239&partnerID=8YFLogxK
U2 - 10.3389/fcell.2023.1236356
DO - 10.3389/fcell.2023.1236356
M3 - Article
C2 - 37829185
AN - SCOPUS:85173801239
SN - 2296-634X
VL - 11
JO - Frontiers in Cell and Developmental Biology
JF - Frontiers in Cell and Developmental Biology
M1 - 1236356
ER -